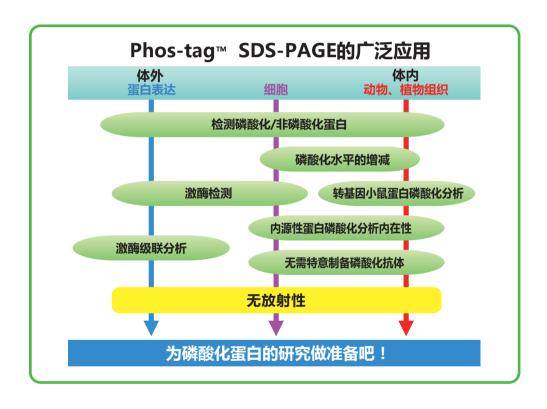


和光纯药工业 Phos-tag® SDS-PAGE 实验指导手册

第4版 2016年3月

改良型 Phos-tag[®] SDS-PAGE 实验流程 Zn²⁺-Phos-tag[®] SDS-PAGE (p.6、p.10-12)


http://www.wako-chem.co.jp/siyaku/

Phos-tag®

Wako

目 录

1 . Phos-tag®简介 ······	 P.3
2 . Phos-tag®SDS-PAGE ······	
3 . 实验流程	 P.6
4. 疑难问题	P.13
5.Phos-tag [®] SDS-PAGE 条件优化	P.16
6. 应用与参考文献	 P.17
7.Q&A	 P.21
8. SuperSep™ Phos-tag [®] 预制胶	 ·· P.25
9 . 其他 Phos-tag [®] 系列产品 ·······	 P.26
■10.相关产品	 ·· P.28

1. Phos-tag® 简介

Phos-tag®

Phos-tag® 是一种能与磷酸离子特异性结合的功能分子,可与以碱性磷酸酶的活性中心为模型合成的丝氨酸/苏氨酸/酪氨酸,还有天冬氨酸/赖氨酸等结合。可用于磷酸化蛋白的分离(Phos-tag® Acrylamide)、检测(Phos-tag® Biotin)、MS分析(Phos-tag® Mass Analytical Kit)、纯化(Phos-tag® Agarose)。

【Phos-tag® 的基本结构】

2个金属离子捕获磷酸基团

M²⁺:锌离子或锰离子

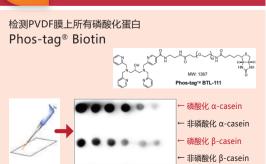
- ◆ 与-2价磷酸根离子的亲和性和选择性高于其他阴离子
- ◆ 在pH5-8的生理环境下生成稳定的复合物

纯化

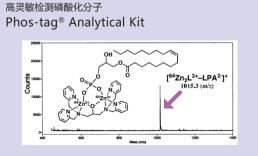
Phos-tag®由日本广岛大学研究生院医齿药学综合研究科医药分子功能科学研究室开发。http://www.phos-tag.com/

凝胶色谱纯化

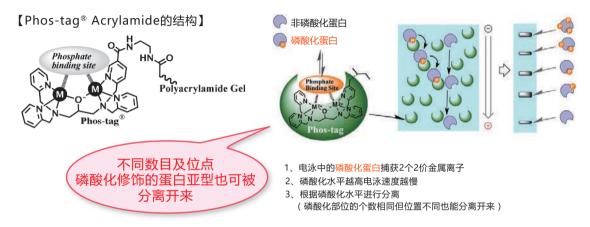
过滤网


化学发光检测

Phos-tag® Agarose

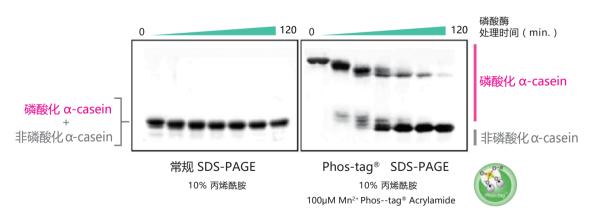


MALDI-TOF/MS 分析


流动分离

2 . Phos-tag® SDS-PAGE

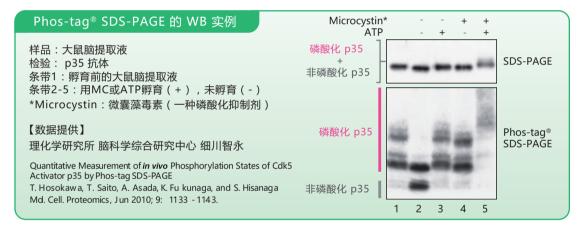
■ Phos-tag® SDS-PAGE简介


Phos-tag® SDS-PAGE通过电泳,根据磷酸化水平不同可分离磷酸化和非磷酸化蛋白。分离后的凝胶可用于各种染色、Western Blotting和质谱分析(MS)等后续实验。Phos-tag® SDS-PAGE凝胶,只需在常规SDS-PAGE胶中加入 Phos-tag 分子与Acrylamide 结合而成的 Phos-tag® Acrylamide 和2价金属(MnCl。或ZnCl。)即可实验。

■ Phos-tag® SDS-PAGE 原理

■ Phos-tag® SDS-PAGE 应用案例 ~α-casein 随时间变化的去磷酸化反应~

α-casein经过碱性磷酸酶处理,将去磷酸化样品通过Phos-tag® SDS-PAGE或常规SDS-PAGE检测其随时间的变化(温育时间:0-120min)。


产品编号	产品名称	包装	保存	备注
304-93526	Phos-tag® Acrylamide 5mM 水溶液	0.3 mL (相当于0.9mg)	冷藏	已配制的水溶液类型
300-93523	Phos-tag® Acrylamide	2 mg		用乙醇、水配制
304-93521	Prios-tag* Acrylamide	10 mg		

■ Phos-tag® SDS-PAGE的特点

- ◆ 任何氨基酸残基的种类/位置都可使用
 - ·可用于未知磷酸化分析
 - ·可用于检测无市售的磷酸化抗体的磷酸化部位
- ◆ 可分离不同的磷酸化部位个数/位置的磷酸化蛋白
 - ·可知磷酸化程度、磷酸化形式
- ◆ 同时检测磷酸化/非磷酸化蛋白
 - ·可定量检测各磷酸化蛋白
 - · 简易得知有无磷酸化
- ◆ 无放射性,无需特别仪器(有SDS-PAGE试剂和装置即可操作)
 - · 简便低耗
- ◆ 电泳后可进行WB, MS分析, 可进行二维电泳
 - ·WB:可分析内源性蛋白(相关应用数据:p.18 ③, ④、p.19 ⑤, ⑥)
 - · MS:可知各磷酸化蛋白的磷酸化部位组成 (相关应用数据: p.17 ①,②)
 - ·二维电泳:可分离等电点相同(磷酸化位数相同)的不同磷酸化蛋白

(相关应用数据: p.17 ②)

■ Phos-tag® SDS-PAGE 分析应用

相关产品请参考p.28-31

目的	样品种类	应用实例	相关产品	应用数据
	裂解液	Ala 替代品 +WB	ImmunoStar® series	p.18 ④
特定磷酸化部位	纯化蛋白质	重组蛋白 + MS 免疫沉淀 + MS	银染MS试剂盒 nanoLC-MS/MS	p.17 ①, ②
	裂解液	WB	ImmunoStar® series	p.18 ④、p.19 ⑤, ⑥
同时检测(定量)各磷酸化蛋白	纯化蛋白质	CBB染色,银染等	QUICK CBB PLUS 银染MS kit等	p.17 ①, ②
是否磷酸化	裂解液	WB	ImmunoStar® series	p.18 ③、p.19 ⑤, ⑥
进一步分离	免疫沉淀样品	二维电泳	QUICK CBB PLUS 银染MS kit等	p.17 ②
	裂解液	柱层析 + WB	ImmunoStar® series	p.18 ③
寻找目标蛋白激酶的抑制剂	纯化蛋白质	重组激酶+ CBB染色,银染等	激酶指南 抑制剂指南①	p.17 ①

■ 与普通SDS-PAGE的不同点·注意事项

Phos-tag® SDS-PAGE 与普通SDS-PAGE的不同点和注意事项。

◆ 需要进行样品前处理

Phos-tag® SDS-PAGE 容易受到EDTA影响,强烈建议对样品进行前处理(TCA沉淀等)。

→详细请看P13

◆ 电泳速度变慢

Phos-tag® SDS-PAGE与普通SDS-PAGE相比,非磷酸化蛋白电泳速度较慢。

→详细请看P16

◆ 无法通过分子量marker推断分子量

Phos-tag® SDS-PAGE无法从marker推断分子量。marker只能用作转膜效率的基准。

→详细请看P21

使用市售预染marker也是条带弯曲的原因。建议用目的蛋白的重组蛋白或去磷酸化的样品代替。

→详细请看P13

◆ 转膜需要EDTA处理

Phos-tag® SDS-PAGE凝胶进行WB时,为了提高转膜效率,在转膜前凝胶需要用EDTA处理。

→详细请看P12

◆ 普通SDS-PAGE也同时进行

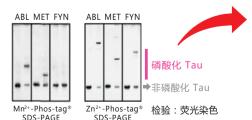
进行Phos-tag® SDS-PAGE时,普通SDS-PAGE作为对照组也一起进行。Phos-tag® SDS-PAGE 检测出复数的条带时,需要判断目的蛋白是磷酸化还是分解形成的。

3.实验流程

■ 两种Phos-tag® SDS-PAGE

Phos-tag® SDS-PAGE凝胶根据Phos-tag® 分子与2价金属离子结合的种类,分成以下2种,配制凝胶所用缓冲液成分也有所不同。各具特点,请根据实验目的选择。各使用例请看P17-19"应用数据"。

[I] Mn²⁺-Phos-tag® SDS-PAGE 凝胶 (以Laemmli 法为基础)


→P17-19 ②345

NEW!

[Ⅱ] Zn²+-Phos-tag® SDS-PAGE 凝胶 (使用中性buffer)

→P17 ①

凝胶种类	优点	缺点
Mn²+-Phos-tag® SDS-PAGE	・与Laemmli法几乎相同 ・高浓度Phos-tag® 也可进行半干式转膜	·部分蛋白质无法分离 ·凝胶需现配
Zn²+-Phos-tag® SDS-PAGE	·分离能力高 ·可分离的蛋白质和磷酸化形式多 ·凝胶可长期保存	· 高浓度Phos-tag® 半干式转膜效率差 · 不足5%的低浓度凝胶条带拖尾

80 μM Phos-tag® Acrylamide, 7.5 % 聚丙烯酰胺凝胶

Zn2+-Phos-tag® SDS-PAGE

- ·分离性能提高(ABL,MET)
- · Mn²⁺Phos-tag[®] SDS-PAGE无法分离 的条带也能分离 (FYN)

冰迫左侧:非磷酸化lau

泳道右侧:磷酸化Tau (ABL,MET,FYN引起的磷酸化形式)

Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. E Kinoshita and E Kinoshita-Kikuta Proteomics, Jan 2011;11(2):319-23.

■ Phos-tag® SDS-PAGE的实验流程

[I] Mn2+Phos-tag® SDS-PAGE ※凝胶请现配

①试剂准备

丙烯酰胺溶液

分离胶 Tris-HCl缓冲液 8.8 Hq

浓缩胶 Tris-HCl缓冲液 pH 6.8

SDS 溶液

Phos-tag® 丙烯酰胺溶液 提供溶液即用型溶液

(见P4

产品编号:304-93526)

也可只用蒸馏水 溶解,但溶解缓 慢 , 用时较长。 40℃加热,使用 超声波清洗机可 更好溶解。

此图标表示为即用型试剂。请参考"10.相关产品"。

Sol. A : 30% (w/v) 丙烯酰胺溶液 (30% T, 3.3% C)

> 丙烯酰胺------29.0 a N,N' - 亚甲基双丙烯酰胺 ······1.0 q

→加入蒸馏水定容至 100mL, 过滤。 【保存条件】4℃,避光

Sol. B : 1.5 mol/L Tris/HCI 缓冲溶液, pH 8.8 (4x 分离胶缓冲液)

(MW: 121, pKa= 8.2 20°C) ·······18.2 g

6.0 mol/L HCl (0.19 等量Tris) ------ 4.85 mL

→加蒸馏水至 100mL。 【保存条件】 4℃

产品编号: 192-11041 分离胶缓冲液(×4) (250 mL) ※含SDS

产品编号: 015-25635

30w/v% 丙烯酰胺溶液

29:1 (500 mL)

Sol. C : 0.50 mol/L Tris/HCI 缓冲溶液, pH 6.8 (4x 浓缩胶缓冲液)

Tris 碱------- 6.06 a 6.0 mol/L HCl (0.96 等量 Tris 碱) ······· 8.0 mL 蒸馏水 ------ 90 mL

产品编号: 199-11051 浓缩胶缓冲液(×4) (250 mL) ※含SDS

产品编号:311-90271

10% SDS 溶液 (100 mL) 产品编号: 313-90275

10% SDS 溶液 (500 mL)

→用 6.0 mol/L HCI (0.1 mL左右) 调节 pH 至 6.8, 加蒸馏水至 100 mL。 【保存条件】4℃

Sol. D : 10% (w/v) SDS溶液

SDS 10.0 a 蒸馏水 ······ 90 mL →搅拌,加蒸馏水至100mL

【保存条件】4℃

※括号内是配制 2 mg Phos-tag ® 时所需各溶液的体积

Phos-tag® Acrylamide (MW: 594.7) ···· 10 m q (2 mg) 甲醇 ··········· 0.10 mL(0.02 mL) 蒸馏水 ······ 3.2 mL(0.64 mL)

本产品 Phos-tag® Acrylamide用0.1 mL 甲醇完全溶解在一个小胶管中。

该溶液需加入 3.2 mL 蒸馏水稀释。

Phos-tag®Acrylamide

注)加蒸馏水后呈乳浊状态(如右图),静置变透明再使用。 如果溶液中出现微量白色粉末状(杂质)不溶物,用离心管 离心分离取上清即可

【保存条件】铝箔遮光,4℃遮光

MnCl。溶液

Sol. F: 10 mmol/L MnCl₂溶液

MnCl₂(H₂O)₄(MW:198) ·············· 0.10 g 蒸馏水 ············50 mL

注)不要使用其它阴离子盐,比如 $Mn(NO_3)_2$ 和 $Mn(CHCOO)_2$ 。在碱性溶液中,会形成 $Mn(OH)_2$ 白色沉淀,被氧化后逐渐变成棕色MnO(OH),凝胶也会因此变色。同时 Mn^2 *的功能也会被破坏。

APS溶液

Sol. G: 10% (w/v) 过硫酸铵溶液

(NH₄)₂S₂O₈(MW:228) ------10 mg 蒸馏水 ------0.10 mL ※ 现配现用

产品编号:019-15922 10w/v% 过硫酸铵溶液 (25 mL) 溶液型,无需预先配制

电泳缓冲液

Sol. H:电泳缓冲液, pH 8.3 (10x 溶液)

→加蒸馏水至 500 mL , 无需加酸或加碱调节pH。

【保存】4℃

使用前,取450 mL 蒸馏水+ 50 mL Sol. H 混匀即可。 产品编号:184-01291 电泳缓冲液(×10)(1L)

产品编号: 318-90323 SDS-PAGE 10 电泳缓冲液(5 L)

上样缓冲液

Sol. I: S上样缓冲液 (3x 溶液)

上样缓冲液(2ME+) (×4)(25 mL) 产品编号:196-11022 上样缓冲液(2ME+) (×2)(25 mL)

产品编号: 174-00553

产品编号: 178-00551

Quick CBB PLUS (1L)

Quick CBB PLUS (250mL)

产品编号:191-13272

蛋白酸性固定液

Sol. J:蛋白酸性固定液(1L)

【使用方法】参考④样品准备

乙酸·········· 0.10 L 甲醇······· 0.40 L 蒸馏水······ 0.50 L

CBB染色液

(可用银染和 荧光染色) Sol. K: CBB 固定液 (0.5 L)

 考马斯亮蓝 (CBB)
 1.25 g

 甲醇
 0.20 L

 乙酸
 50 mL

 蒸馏水
 0.25 L

→用甲醇溶解 CBB , 再加入乙酸和水

漂洗和脱色

Sol. L:漂洗脱色液 (1 L)

O-P-O-R

② 分离胶配制

凝胶需要现用 现配。

*1) MnCl₂溶液 的摩尔浓度需为 Phos-tag®的2 倍。

*2)文中TEMED和Sol.G(过浓度仅为参考,您可以采用常规实验。

分离胶溶液

注意

Sol.E(Phos-tag®溶液)与Sol.A(丙烯酰胺溶液)的添加量,需探讨条件。 优化Phos-tag® Acrylamide 浓度与丙烯酰胺溶液浓度。 详细请看P16 "5.Phos-tag® SDS-PAGE条件优化"。

③ 浓缩胶配制

浓缩胶溶液

〈分离 200-350kDa 磷酸化蛋白〉

制备 3~5% 低浓度的聚丙烯酰胺凝胶,为加强凝胶硬度可加入 0.5% 的琼脂糖。

②'含琼脂糖低浓度 分离胶配制

分离胶溶液

(制备10 mL 20μmol/L Phos-tag® Acrylamide含3.0%聚丙烯酰胺凝胶和0.5%琼脂糖)

Sol. A:30% (w/v) 丙烯酰胺溶液 ····································	1.00	mL
Sol. B: 1.5 mol/L Tris/HCl 溶液, pH 8.8······	2.50	mL
Sol. E: 5.0 mmol/L Phos-tag® 溶液	0.04	mL
Sol. F: 10 mmol/L MnCl ₂ 溶液·······	0.04	$mL^{*1)}$
Sol. D: 10% (w/v) SDS 溶液	0.10	mL
TEMED(四乙基乙二胺)····································	10	$\mu L^{\ ^{\ast 2)}}$
蒸馏水		
1.5% (w/v) 琼脂糖H *3)*4)	3.33	mL
Sol. G:10% (w/v) 过硫酸铵溶液····································	··· 50	$\mu\;L^{^{\star2)}}$

*3)琼脂糖加入蒸馏水后在微波炉里完全融化,此时溶液仍然是热的。

*4)如有需要, 请预热枪头和 制胶容器至 40~45℃

在变硬之前直接把琼脂糖倒进制胶容器。

Agarose H (高强度型)

产品编号:315-01203(1g) 产品编号:319:01201(10g)

产品编号: 317-01202 (25g)

③'配制加入琼脂糖 的低浓度浓缩胶

*2)*3)*4)

→参照前一页

浓缩胶

(例如,制备10 mL(或2 mL) 3.0 w/v%丙烯酰胺含0.5%(w/v)琼脂糖的溶液)

Sol. C: 0.50 mol/L Tris/HCI 溶液, pH 6.8 ----- 2.50 mL (0.50 mL) TEMED(四乙基乙二胺)......10uL(2uL)²⁾ 蒸馏水 ------- 3.01 mL (602µL) 1.5%(w/v)Agarose H *3)*4) 3.33 mL (666µL)

在变硬之前直接把琼脂糖倒进凝胶容器。

④ 样品制备

- 1) 将样品与 3 μL Sol. I 在离心管中混合,加蒸馏水至 9 μL。
- 2) 溶液冷却至室温。
- 3) 加入上样缓冲液(如:1.5 µL/孔)。

% β-casein 上样量为 5-10 μq/ 孔,即可得到清晰条带。

强烈建议使用 TCA沉淀,透析 处理等去除杂质 结合参考 '4.疑难问题"

⑤ 电泳

关于分子量marker 请参考"4.疑难问题" 或 "7.Q&A"

- 1) 安装好电泳装置,电泳槽中加入电泳缓冲液(即 Sol. H)。
- 2) 轻轻拔出浓缩胶中的梳子,向每个孔中加样。
- 3)接通电源,恒流条件下跑胶(30 mA/gel),直到BPB溴酚蓝跑到分离胶底部为止。 如同时跑 2 块蛋白胶, 请用 60 mA 的条件进行电泳。

※进行Western Blotting, 质谱分析时, 电泳后的步骤请参考P12。

⑥ CBB染色与脱色 可银染或荧光染色。

- 1) 将凝胶浸泡在Sol. J(50 mL) 中10分钟, 轻轻摇动, 固定蛋白。
- 2) 将凝胶浸泡在染色液中(即50 mL Sol. I) 2小时,轻轻摇动。
- 3) 用脱色液(即50 mL Sol. L)漂洗3次,除去多余的染液,直到背景变得足够干净。
- 4) 凝胶拍照。

[Ⅱ] Zn²⁺-Phos-tag[®] SDS-PAGE ※凝胶配制3个月仍可使用

参考[I] Mn²⁺-Phos-tag®

SDS-PAGE

Mn²⁺-Phos-tag® SDS-PAGE适用于一般的Laemmli SDS-PAGE法,操作简便,但也有部分蛋白 质无法分离磷酸化/非磷酸化蛋白。对此,使用中性Bis-Tris凝胶的SDS-PAGE系的 Zn²⁺-Phos-tag® SDS-PAGE,能在中性pH进行电泳,表现更高的磷酸基团结合功能,分离效果 更好。

试剂准备

丙烯酰胺溶液

SDS 溶液 Phos-tag® Acrylamide 溶液 APS 溶液

氯化锌溶液 也可使用 10 mmol/L Zn(NO₂), 此图示为即用型试剂。相关产品信息参考"10.相关产品"。

Sol. A:30%(w/v)丙烯酰胺溶液(30% T,3.3C)

Sol. D: 10% (w/v) SDS 溶液

Sol. E: 5.0 mmol/L Phos-tag® 溶液 含3% (v/v) 甲醇

┃Sol. G:10%(w/v)过硫酸铵溶液

Sol. M: 10 mmol/L ZnCl, 溶液 ※现配现用

ZnCl₂ (MW: 136, 纯度 98 % 以上) 0. 70 g 蒸馏水 ------ 500 mL

注)ZnCI₂具有潮解性,请使用新品。溶液中如有ZnO等杂物,过滤后使用。

Bis-Tris - 盐酸溶液	Sol. N: 1.4 mol/L Bis-Tris/HCl 溶液,pH 6.8(4x 分离胶溶液) Bis-Tris 碱(MW: 209, pKa=6.5 at 20℃)
亚硫酸氢钠溶液	Sol. O : 0.5 mol/L 亚硫酸钠溶液 NaHSO ₃ (FW : 106)
电泳缓冲液	Sol. P:电泳缓冲液,pH 7.8(5x 溶液) Tris 碱 (FW: 121, p <i>K</i> a = 8.2 at 20°C, 0.50 mol/L)
	电泳缓冲液 ※现用现配 Sol. P:电泳缓冲液,pH 7.8(5x 溶液) 100 mL Sol. O:0.5 mol/L 亚硫酸钠溶液 5 mL 加蒸馏水至500 mL。
* ¹⁾ ZnCl ₂ 添加量是 Phos-tag® Acrylamide 的2倍(摩尔比) * ²⁾ TEMED 与Sol.G 使用普通浓度。 此处添加量为同一个 例子。	(例如配制10mL 12% 丙烯酰胺、50 μmol/L Phos-tag® Acrylamide , 100 μmol/L ZnCl ₂ 凝胶) Sol. A:30%(w/v) 丙烯酰胺溶液 4.00 mL Sol. N:1.4 mol/L Bis-Tris/HCl 溶液 , pH 6.8 2.50 mL Sol. E:5.0 mmol/L Phos-tag® 溶液 0.10 mL Sol. M:10 mmol/L ZnCl ₂ 溶液 0.10 mL TEMED(四乙基乙二胺) 10 μL *2) 蒸馏水 3.24 mL < 搅拌2分钟,去除空气 > Sol. G:10%(w/v)过硫酸铵溶液 50 μL *2)
	Sol.E(Phos-tag® Acrylamide溶液)与Sol.A(丙烯酰胺溶液)的添加量, <mark>需探讨条件</mark> 。优化Phos-tag® Acrylamide浓度与丙烯酰胺溶液浓度。 详细请看P16 "5.Phos-tag® SDS-PAGE条件优化"。

浓缩胶

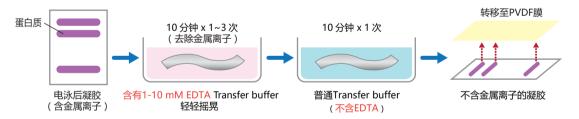
"样品配制","电泳","CBB染色与脱色"请参考[I]Mn2+-Phos-tag® SDS-PAGE。部分蛋白质可能引起条带弯曲等异常条带的产生。这是由于蛋白质的金属配体(硫醇基、咪唑基、羧基等)的影响,导致Zn²+从Phos-tag®分子解离。在样品缓冲液加入1mM左右的ZnCl $_2$,条带弯曲得到改善,分离能力上升。

<分离200 kDa 以上高分子磷酸化蛋白>

普通[II]Zn²+-Phos-tag® SDS-PAGE 分离/浓缩胶使用Bis-Tris。Bis-Tris与TEMED构造相似,用作自由基淬灭剂。因此低浓度聚丙烯酰胺凝胶(低于5%)分子失去原有效果,条带弥散。3%或4%的低浓度聚丙烯酰胺进行Zn²+-Phos-tag® SDS PAGE时,用以下Tris-AcOH代替Bit-Tris配制凝胶(结合参考[I]-③′含低浓度琼脂糖凝胶配制)。推荐200kDa以上的高分子蛋白质使用。

组 成	Tris-AcOH 凝胶 Bis-Tris 凝胶	
电泳缓冲液	· 50mM Tris · 0.1%(w/v) SDS · 50mM Tricine · 5.0 mM 亚硫酸氢钠	·100mM Tris · 0.1%(w/v)SDS ·100mM MOPS · 5.0 mM 亚硫酸氢钠
浓缩/分离胶缓冲液	· 200mM Tris-AcOH (pH7.0)	· 357 mM Bis-Tris-HCl (pH 6.8)
上样缓冲液	·普通Laemmli系	·普通Laemmli系
凝胶浓度	·3-4%聚丙烯酰胺+0.5%琼脂糖	·≥ 5% 聚丙烯酰胺

■ Phos-tag® SDS-PAGE 后续分析


Western Blotting

Phos-tag® SDS-PAGE凝胶进行转膜时,磷酸化蛋白的转膜效率显著低下。为了提高转膜效率,需使用EDTA去除Mn²+/Zn²+。根据转膜装置的种类选择下述操作。也可参考P14。

① 采用半干法

- 1、电泳结束后,将凝胶浸泡在含 1~10 mmol/L EDTA的 Transfer buffer中,轻轻摇动十分钟(重复1-3次)。
- ※ 电泳结束后,根据凝胶的厚度等调整与 EDTA 缓冲溶液作用的时间、温度(如较厚 1.5 mm: 20 分钟 ×2)。
 ※除了 Transfer Buffer 外,也可使用 1×Running Buffer。
- 2、然后将凝胶浸泡在不含 EDTA 的 Transfer Buffer 中,轻轻摇晃 10 分钟(一次)。
- ※需要对整个实验操作进行优化,如时间、温度等。

注意

若高浓度Zn²+-Phos-tag® 凝胶(如100μM Phos-tag®)经过EDTA处理,转膜效率不高,这种情况下请采用湿法转膜(tank式)。

② 采用tank(湿)法

使用含0.1% Transfer buffer。tank法使用含有SDS的 Transfer buffer,可省去EDTA处理。蛋白质有可能从膜上脱离。SDS最适宜浓度为0.05-0.2%。

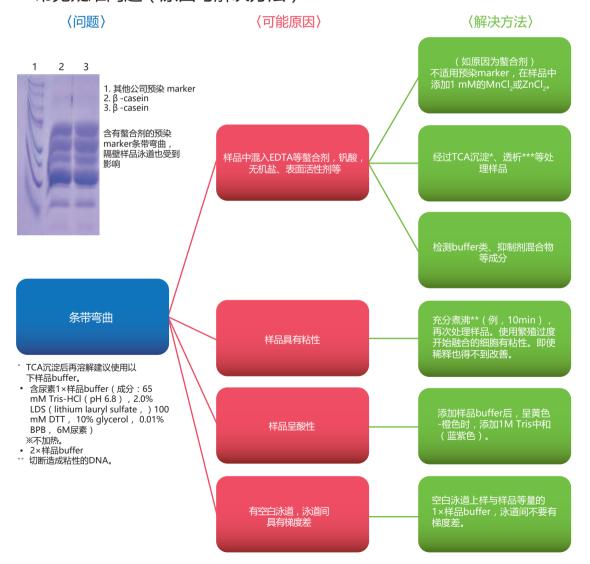
产品编号: 019-25111 AqueBlot™ 10×Tris-Glycine-SDS Transfer Buffer (1 L, 0.05% SDS)

◆质谱分析

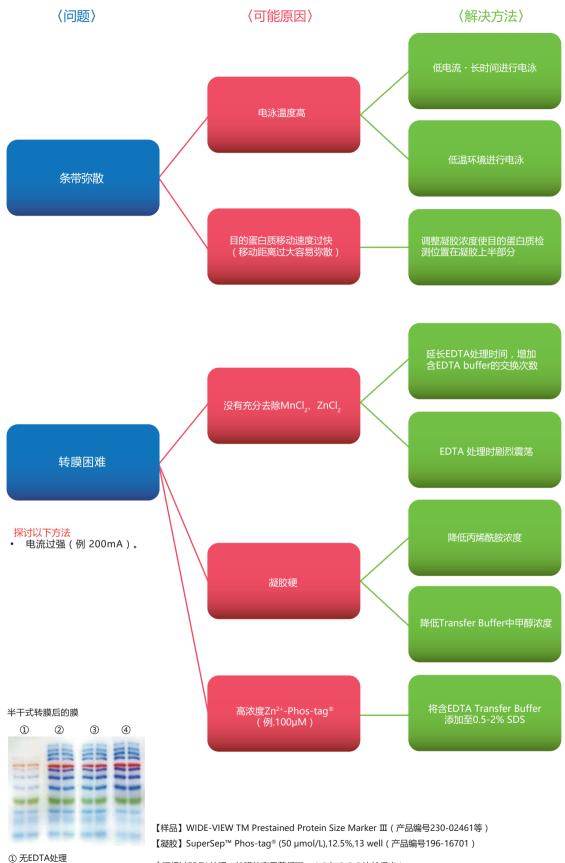
电泳后进行银染或CBB染色,按照普通胶内消化步骤操作。无需EDTA处理等特殊步骤。

产品编号: 299-58901 银染质谱试剂盒 (20 tests)

4. 疑难问题


■ 开始-成功的关键是"样品的处理"

样品状态很大程度上影响着电泳结果。注意以下事项处理样品。


- 混进有影响物质:必须防止EDTA。市售抑制剂也可能含有混合物或buffer类物质。也要去除培养基成分。
- ●样品状态:避免使用繁殖过度开始融合的细胞的裂解液等粘性高的样品(稀释也得不到改善)。
- ●统一样品buffer成分:减少凝胶上样的各样品buffer成分的差别。特别是使用经磷酸处理的样品、marker。螯合剂、表面活性剂等,MnCl₂、ZnCl₂的浓度也有影响。

如无改善建议注意以上事项再次处理样品。

■ 常见疑难问题(原因与解决方法)

- *不经过EDTA处理,转膜效率显著低下。(①与②③④比较得出)。 ② 1 mM EDTA 10分钟2次 建议1-10mM EDTA 10分钟2次进行处理。 ③ 10 mM EDTA 10分钟1次
 - 处理时间与含EDTA的交换次数尤为重要。

探讨以下方法

- •凝胶中Phos-tag® Acrylamide 与金属离子 (MnCl,或ZnCl,)的摩尔比变 大。(例如1:4)。
- Tris-Tricine 缓冲液用作电泳缓冲液。
- (Mn2+-Phos-tag® SDS-PAGE) Zn2+-Phos-tag® SDS-PAGE需要探讨
- 重新调整试剂。

产品编号: 200-17071 甘氨酸电泳缓冲液(×10) (1L)

■ 其他疑难问题

- 免疫沉淀样品无法获得磷酸化蛋白 使用单克隆抗体时,表位和磷酸化部位重复,无法获取磷酸化蛋白。免疫沉淀提纯目的蛋白时,建议 使用多克隆抗体。
- 样品状态异样 处理细胞裂解液时,使用PBS Wash有可能对磷酸化状态产生影响。去除培养基后,直接加入TCA。
- 凝胶有问题,但无法判断样品是否有问题。 有作为阳性对照的磷酸化 α -casein与去磷酸化 α -casein的混合物(产品编号:038-23221, α -casein,牛 奶源,去磷酸化,1mg)。本产品可当作样品,进行普通SDS-PAGE.
- Phos-tag® Acrylamide 无法溶解 加入甲醇或水后,40℃加热,使用超声波清洗机,就能变得容易溶解。
- 不同泳道分离能力、电泳速度各不相同 不同样品,与Phos-tag®活性相关物质的浓度可能区别很大(EDTA、Mn²+、Zn²+等)。建议处理时, 样品间浓度差尽可能减小。
- 蛋白弥散

在恒流作用下长时间的电泳,由于温度过高会引起蛋白分解和弥散。

- 1. 如果要在恒流作用下进行电泳,可以尝试在低温环境中进行,在使用之前将电泳缓冲液充分冷却,也 可以在电泳槽周围缠绕冷却的绷带等(但是切记不要用冰块,以防引起触电)。
- 2. 若能提供恒压,也可以使用恒压进行电泳(例如:200V)。电泳速度会变慢,但是可以防止电泳过 程中产生的热量。
- 凝胶易碎

请参考下列凝胶浓度探讨方法。

①凝胶浓度大于5%:

提高N,N '-四甲基乙二胺的比例增加凝胶的硬度。(例.24:1)

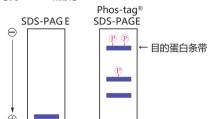
②凝胶浓度不足5%:

添加琼脂糖增加凝胶的硬度。具体请参考"3.实验流程"的[I]-②′③′, P12的"Tris-AcOH凝胶"。

染色背景高

可将凝胶用EDTA处理,去除金属离子后再进行染色。

5. Phos-tag® SDS-PAGE 条件优化


为了保证Phos-tag® PAGE的分离效率, 需要优化丙烯酰胺和Phos-tag® Acrylamide的浓度。第一步要优化丙烯酰胺的浓度,其次是Phos-tag® Acrylamide浓度。

① 优化丙烯酰胺的浓度

首先,确定进行常规 SDS-PAGE 时目标蛋白迁移到凝胶最底部的最佳丙烯酰胺浓度。Phos-tag ® PAGE 时蛋白迁移速度比常规 SDS-PAGE 低(包括非磷酸化蛋白),因此丙烯酰胺的浓度要进行摸索(见下图)。随着 Phos-tag ®浓度升高,迁移速度变慢。

※使用溴酚蓝进行凝胶电泳,当溴酚蓝到达分离胶底部时,溴酚蓝的染色位置可以作为1.0 Rf值为标准。选择合适的丙烯酰胺浓度进行凝胶电泳。在常规SDS-PAGE凝胶电泳中,当电泳条带Rf值在0.8和0.9之间能观察到目的蛋白时,此时的丙烯浓度最适合进行凝胶电泳。

【例:10%凝胶】

> 60 kDa:6%凝胶, < 60 kDa:8%凝胶

<在高分子量蛋白质(>200 kDa)的情况下>

当凝胶中的丙烯酰胺量少于 4%时,可添加琼脂糖以增加凝胶硬度。有报道认为能分离350kDa的蛋白质。(参考"7. Q&A【分离】)

另外,提高N,N'-亚甲基双丙烯酰胺的比例也可增加凝胶硬度。例5%丙烯酰胺(24:1)。

② 优化Phos-tag® Acrylamide的浓度

其次,确定 Phos-tag ® Acrylamide 的最佳浓度。 请从最低到最高依次摸索出最佳浓度。

例) 20 $\mu M \rightarrow$ 50 $\mu M \rightarrow$ 100 μM

【细胞裂解液】

样品为细胞裂解液时,Phos-tag® Acrylamide 从低浓度20μM开始摸索,提高至100μM,将凝胶浓度设定为磷酸化 与非磷酸化蛋白的迁移距离差变大的浓度。

(数据提供:香川大学 农学部 应用生物科学科 杉山康宪)

【Phos-tag®浓度与迁移距离】Mn2+-Phos-tag®

50 100 150 μM

Phos-tag®浓度与分离能力,迁移距离的关系

通常情况下,浓度较高时分离能力更好。但是高浓度会降低蛋白(包括磷酸化蛋白)泳动速度。有时由于蛋白浓度较低,相同时间低浓度的Phos-tag®分离能力反而更好。结果根据蛋白质种类来决定。建议从低浓度开始摸索。

【Phos-tag®浓度与分离能力】

0 μM Zn²⁺-Phos-tag® 50 μM
10 μM 50 μM

A B C A B C

A B C

A B C

A: β-casein, B: Ovalbumin, C: Pepsin, M: Marker +: 磷酸化蛋白(A:5处,B:2处,C:1处)

-:去磷酸化蛋白(碱性磷酸酶)

Phosphorylase b (97.2 kDa) BSA(66.4 kDa) =

Carbonic Anhydrase (29.0 kDa) — Trypsin Inhibitor (20.1 kDa)

Phos-tag®浓度(高)→移动距离(小

Phos-tag®浓度。→分离能力。

. 应用与参考文献

实验数据

在此介绍使用过Phos-tag® Acrylamide 各位研究者的感想和经验。以下分别是日本东京大学小川觉之 的结果和评价、横滨市立大学木村弥生二维电泳的实验结果以及高知大学杉山先生和理化学研究所细川先生 的Western Blotting的实验结果。

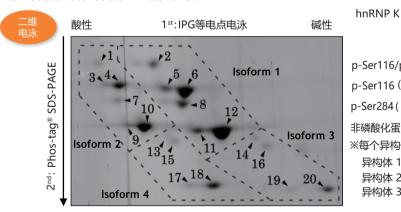
①Phos-tag® SDS-PAGE的磷酸化/非磷酸化蛋白比较

我推荐使用Phos-tag®

—东京大学研究院医学研究科 小川觉之

Phos-tag® 是专为研究磷酸化蛋白而新开发出来的试剂。此产品使用方便,不但可用于体外实验,还能定量分析体内 蛋白的磷酸化水平。Phos-tag® SDS-PAGE可用于常规电泳实验,无需购买特殊设备,性价比高。传统蛋白磷酸化的 研究需要特异的磷酸化抗体、RI等其它试剂,操作复杂,花费大,且放射性元素会有安全隐患,而Phos-tag®的出现 恰恰可以弥补这些缺点,为磷酸化蛋白研究提供新的方向。

磷酸化蛋白和非磷酸化蛋白利用Phos-tag® SDS-PAGE的分离比较


7.5% acrylamide, 75µMPhos-tag®acrylamide, 150µM Zn(NO₃)₂

摸索约40 kDa的蛋白质的磷酸化激酶,经过激酶反应的样品用Phos-tag SDS-PAGE分离。与无磷酸化样品(NC)比较,其他 样品因反应的激酶种类不同,磷酸化/非磷酸化蛋白的数量比,磷酸化程度、磷酸化蛋白丰度等不同,可从少量样品量获取更多 信息。以此信息作为线索运用到质谱分析进行详细的分析,能确认各激酶特异性磷酸化部位。

(参考文献: Ogawa T, Hirokawa N. Cell Rep. 2015 Sep 22; 12 (11): 1774-88)

② 二维电泳中的应用:分析hnRNP K磷酸化异构体

小鼠巨噬细胞1774.1经LPS刺激后,裂解细胞,经过免疫沉淀法分离得到hnRNP K。在二维电泳中,一维是IPG胶 (pH4.7-5.0), 二维是Phos-tag® SDS-PAGE, 可分离hnRNP K的异构体(66 kDa, 64 kDa)。利用质谱仪, 可以 确认不同的点代表不同的亚型或修饰蛋白。

hnRNP K:不均一核糖核蛋白K

p-Ser116/p-Ser284 (spots 1,2) 磷酸化 p-Ser116 (spots 3.4,5,6) 版本 p-Ser284 (spots 7,8)

非磷酸化蛋白 (spots 9, 10,11,12) ※每个异构体来源于剪切后的变异体

异构体 1,3: C末端: SGKFF 异构体 2,4:C末端:ADVEGF 异构体 3,4: 外显子缺少一个

25 μM Mn²⁺-Phos-tag® Acrylamide, 7.5% 聚丙烯酰胺凝胶

同一个等电点的位置上,不同位点发生磷酸化都可以被区分开来 (例.spots 6,与8,4与7)

Characterization of multiple alternative forms of heterogeneous nuclear ribonucleoprotein K by phosphate-affinity electrophoresis. Y Kimura, K Nagata, N Suzuki, R Yokoyama, Y Yamanaka, H Kitamura, H Hirano, and O Ohara, Proteomics, Nov 2010; 10(21): 3884-95.

【数据提供】 横滨市立大学 生命纳米系统科学研究科 生物体超分子系统科学专业 木村弥生 (Dr. Y. Kimura) 、平野久 (Dr. H. Hirano) 理化学研究所RCAI 小原收

③ 检测含有Dnmt1磷酸化激酶的片段

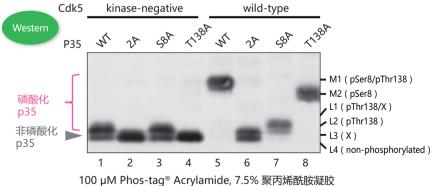
20 µM Mn²⁺Phos-tag® Acrylamide 含有磷酸化GST-Dnmt1 (1-290)酶的片段 6% 聚丙烯酰胺凝胶

- ① 采用亲和色谱法从鼠脑提取液中纯化GST-Dnmt1(1-290)结合蛋白
- ② 使用0.3 M和1 M NaCl的DNA纤维素柱洗脱得到目的蛋白
- ③ GST-Dnmt1 (1-290) 作为体外激酶实验的反应底物
- ④ Phos-tag™ SDS-PAGE用于Western Blotting,确定迁移条带中每个片 段的激酶活性

(检验:抗小鼠Dmnt1(72-86)抗体)

我们可以确定在片段中含有目的激酶! 【参考文献】

详细解说请看网络研讨会! 确定DNA甲基转移酶磷酸化蛋白激酶 ag SDS-PAGEを利用し https://www.youtube.com/watch?v=Ks7ql zRKHx4&feature=youtu.be


The DNA-binding activity of mouse DNA methyltransferase 1 is regulated by phosphorylation with casein kinase 1delta/epsilon. Y. Suqiyama, N. Hatano, N. Sueyoshi, I. Suetake, S. Tajima, E. Kinoshita, E. Kinoshita-Kikuta, T. Koike, and I. Kameshita, Biochem. J., May 2010;427 (3): 489-97.

高知大学 综合研究中心 生命、功能物质部门 实验实习机器设施 杉山康宪 (Dr. Y. Suqiyama) 香川大学 农学部 应用生物科学科 动物功能生化学研究室 龟下勇 (Dr. I. Kameshita)

④ 利用p35的丙氨酸突变体确定Cdk5激活p35的磷酸化位点

Cdk5:细胞周期依赖性蛋白激酶5

p35常见的磷酸化位点是Ser8和Thr138。但是Ser8和Thr138位点往往会发生丙氨酸突变,产生3种突变体(Ser8突变体 : S8A, Thr138突变体: T138A, Ser8和Thr138双突变体: 2A)。这3种突变体、野生型p35、Cdk5和没有激酶活性 的Cdk5都来源于COS-7细胞。这些细胞裂解液用Phos-tag™ SDS-PAGE和Western blotting 进行检测(检测抗体: p35抗体)。

可明确磷酸化位点和条带迁移率的关系!

泳道1(条带L2和L4)和泳道5(条 带 M1): p35 在 Cdk5 的作用下发生 了磷酸化;

泳道 1(条带 L2 和 L4)和泳道 3(条 带 L2 和 L4): 在无激酶活性 Cdk5 的作用下,大约有一半p35蛋白在 Thr138 位点发生磷酸化,同样在138 位发生突变的 p35 蛋白亦是如此。

泳道5(条带 M1)和泳道6(条 带 L3 和 L4): Ser8 和 Thr138 是主要 的磷酸化位点;

泳道5(条带M1)、泳道7(条 带 L1 和 L2)和泳道 8(条带 M2):

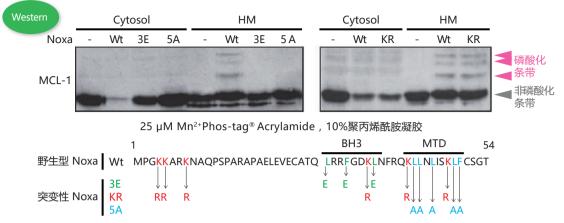
条带 M1 是 Ser8 和 Thr138 都发 生磷酸化的条带;

条带 M2 是只有 Ser8 磷酸化的条

条带 L1 和 L2 是只有 Thr138 磷酸 化的条带

※条带 L1 和 L3 中的 X 是不确定哪个 位点发生磷酸化的条带;

※条带 L4 是非磷酸化的 p35。


Quantitative Measurement of in Vivo Phosphorylation States of Cdk5 Activator p35 by Phos-tag ™ SDS-PAGE. T.Hosokawa, T. Saito, A. Asada, K. Fukunaga, and S. Hisanaga, Mol. Cell. Proteomics, Jun 2010; 9: 1133 - 1143. 【数据提供】

理化学研究所 脑科学综合研究中心 回路功能研究核心 记忆功能研究团队 细川智永 (Dr. T. Hosokawa) 首都大学东京 理工学研究科 生命科学专业 神经分子功能研究室 久永真市 (Dr. S. Hisanaga)

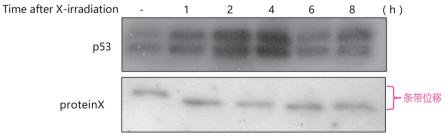
⑤野生型/突变型 Noxa 表达中的 MCL-1磷酸化水平变化

野生型(wt)及突变型(3E,KR,5A)的Noxa在肺小细胞癌细胞株H209细胞表达,进行细胞溶质(Cytosol)分馏和HM(Heavy Membrane,含线粒体较多)分馏分离。通过Phos-tag® SDS-PAGE分离出样品中的MCL-1(40 kDa),使用抗MCL-1抗体进行Western Blotting检测。

MTD: 线粒体靶向域 mitochondrial targeting domain

表达野生型和突变性的Noxa的H209细胞中,通过线粒体能使MCL-1的磷酸化水平上升。

【参考文献】


Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer. Wataru Nakajima, Mark A. Hicks, Nobuyuki Tanaka, Geoffrey W. Krystal, and Hisashi Harada Cell Death and Disease (2014) 5, e1052; doi:10.1038/cddis.2014.6 【数据提供】 日本医科大学 先进医学研究所 基因控制部门 中嶋亘

⑥p53 和proteinX经过X射线照射后磷酸化状态随时间的变化

人肺癌源Lu99细胞使用X射线(5Gy)照射,一定时间回收细胞。处理细胞提取液,使用SuperSep Phos-tag®(50µmol/L)(10%,13孔)进行 SDS-PAGE。用含10mM EDTA Transfer Buffer处理凝胶,转膜至PVDF膜。 用2% Milk/TBS-T对膜进行封闭后,与一抗反应(上段:p53,下段:细胞周期相关蛋白 proteinX)。再进行化学显色试剂检测。

Western

SuperSep™ Phos-tag® (50µmol/L)10%,13孔

在X射线照射下, p53的累积在4小时后达到最高, proteinX 磷酸化状态能随着时间变化。

【数据提供】 东京学医学系研究科 疾病生命工学中心 放射线分子医学部门 榎本敦

■ 参考文献

Phos-tag®试剂

- Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of phosphorylated compounds using a novel phosphate capture
 molecule, Rapid Communications of Mass Spectrometry, 17, 2075-2081 (2003), H. Takeda, A. Kawasaki, M. Takahashi, A. Yamada, and
 T. Koike
- Phosphate-binding tag: A new tool to visualize phosphorylated proteins, Molecular & Cellular Proteomics, 5, 749-757 (2006), E. Kinoshita, E. Kinoshita-Kikuta, K. Takiyama, and T. Koike
- Separation and detection of large phosphoproteins using Phos- tag SDS-PAGE, Nature Protocols, 4, 1513-1521 (2009), E. Kinoshita, E. Kinoshita-Kikuta, and T. Koike

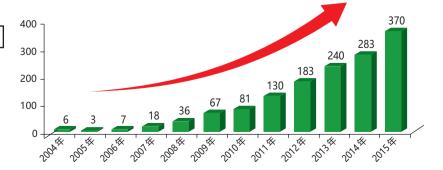
Mn²⁺-Phos-tag® SDS-PAGE

- Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling, *Nat. Cell Biol.*, 9,1319-1326 (2007),C. I. Maeder et.al. M. A. Hink, A. Kinkhabwala, R. Mayr, P. I. H. Bastiaens and M. Knop
- Regulation of PKD by the MAPK p38d in Insulin Secretion and Glucose Homeostasis, Cell,136, 235-248 (2009), G. Sumara, I. Formentini,
 S. Collins, I. Sumara, R. Windak, B. Bodenmiller, R. Ramracheya D. Caille, H. Jiang, K. A. Platt, P. Meda, R. Aebersold, P. R orsman, and R. Ricci1
- Dbf4-Dependent Cdc7 Kinase Links DNA Replication to the Segregation of Homologous Chromosomes in Meiosis I, Cell,135, 662-678 (2008) J. Matos, J. J. Lipp, A. Bogdanova, S. Guillot, E. Okaz, M. Junqueira, A. Shevchenko, and W. Zachariae
- Kinome Profiling in Pediatric Brain Tumors as a New Approach for Target Discovery, Cancer Res., 69, 5987-5995 (2009), A. H. Sikkema,
 S. H. Diks, W. F.A. den Dunnen, A. ter Elst, F. J.G. Scherpen, E. W. Hoving, R. Ruijtenbeek, P. J. Boender, R. de Wijn, W. A. Kamps, M. P. Peppelenbosch, and E. S.J.M. de Bont
- Regulation of mitochondrial transport and inter-microtubule spacing by tau phosphorylation at the sites hyperphosphorylated in Alzheimer's disease, J Neurosci., 32, 2430-2441 (2012), K.Shahpasand, I. Uemura, T.Saito, T.Asano, K.Hata, K.Shibata, Y.Toyoshima, M.Hasegawa, S.Hisanaga
- The Hsp90 Kinase Co-chaperone Cdc37 Regulates Tau Stability and Phosphorylation Dynamics, J. Biol. Chem., 286, 16976 16983 (2011)., Umesh K. Jinwal, Justin H. Trotter, Jose F. Abisambra, John Koren, III, Lisa Y. Lawson, Grant D. Vestal, John C. O'Leary, III, Amelia G. Johnson, Ying Jin, Jeffrey R. Jones, Qingyou Li, Edwin J. Weeber, and Chad A. Dickey
- PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria, Science, Apr 2013;340: 471 475., Yun Chen and Gerald W. Dorn, II
- Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice, Science, Dec 2015;350: aad2459., Guohua Gong, Moshi Song, Gyorgy Csordas, Daniel P. Kelly, Scot J. Matkovich and Gerald W. Dorn, II

Zn²⁺-Phos-tag® SDS-PAGE

- Phosphorylation of Phytochrome B Inhibits Light-Induced Signaling via Accelerated Dark Reversion in Arabidopsis, PLANT CELL, Feb 2013; 25: 535 544., Mátyás Medzihradszky, János Bindics, Éva Ádám, András Viczián, Éva Klement, Séverine Lorrain, Péter Gyula, Zsuzsanna Mérai, Christian
- MAPK feedback encodes a switch and timer for tunable stress adaptation in yeast, Sci. Signal., Jan 2015; 8: ra5., Justin G. English, James P. Shellhammer, Michael Malahe, Patrick C. McCarter, Timothy CElston, and Henrik G. Dohlman
- Mechanism of Activity-Dependent Cargo Loading via the Phosphorylation of KIF3A by PKA and CaMKIIa., Neuron. 2015 Sep 2;87
 (5):1022-35., Ichinose S, Ogawa T, and Hirokawa N.
- Microtubule Destabilizer KIF2A Undergoes Distinct Site-Spedif Phosphorylation Cascades that Differentially Affect Neuronal Morphogenesis, Cell Reports, 2015 Sep 22; 12 (11):1774-88

SuperSep™ Phos-tag®


- A laborsaving, timesaving, and more reliable strategy for separation of low-molecular-mass phosphoproteins in Phos-tag affinity electrophoresis. Int. J. Chem. 4, 1-8 (2012), Kinoshita-Kikuta, E., Kinoshita, E., and Koike, T.
- In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity, *J. Cell Biol.*, Jul 2014; **206**: 113 127., Sei Kuriyama, Eric Theveneau, Alexandre Benedetto, Maddy Parsons, Masamitsu Tanaka, Guillaume Charras, Alexandre Kabla, and Roberto Mayor
- DNA replication and spindle checkpoints cooperate during S phase to delay mitosis and preserve genome integrity, J. Cell Biol., Jan 2014;
 204: 165 175., Maria M. Magiera, Elisabeth Gueydon, and Etienne Schwob

■ Phos-tag® 使用文献数目的变化

Google Scholar 调查

※不含专利・引用部分

检索 Phos-tag

Q & A

7. O&A

Phos-tag® Acrylamide

检 测

Q. 可检测磷酸化蛋白吗?

A. 可以,用定性染色法(如考马斯亮蓝)染色,再检测条带的强弱即可。

分 离

Q. 此产品可分离多大的蛋白 (kDa)?

A. 据文献报道,可分离 350 kDa 的磷酸化蛋白。可在低浓度Acrylamide加入琼脂糖。详细请参考 "3.实验流程"的[I]-②',③'、 P12的 "Tris-AcOH凝胶" (20 µM Phos-tag® Acrylamide, 3% 丙烯酰胺 + 0.5% 琼脂糖)。

文献: Proteomics, 9, 4098-4101(2009), E. Kinoshita, E. Kinoshita-Kikuta, H. Uchijima, and K. Koike

染色

Q. 除了CBB以外,凝胶可以用其他方法染色吗?

A. 可以,可用阴性染色、银染、荧光染色。

使用次数

O. 包装内有多少块凝胶?

A. 取决于使用浓度。请参考右表。 ※ 凝胶厚1mm, 宽9cm, 长7.7cm

Phos-tag [®]	20 µM	50 µM	100 μ M
0.3 mL 包装 (0.9 mg)	约9块	约4块	约2块
2 mg 包装	约20块	约8块	约4块
10 mg 包装	约100块	约40块	约20块
SuperSep™ Phos-tag®	_	5块	_

凝胶的使用期限

Q. 配制含Phos-tag® 凝胶后能否保存?

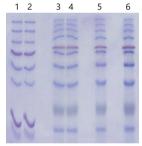
A. Mn2+-Phos-tag® SDS-PAGE凝胶无法保存。配制凝胶后,当天使用。 Zn2+-Phos-tag® SDS-PAGE凝胶可冷藏保存3个月。

Phos-tag® Acrylamide溶液的使用期限

Q.用甲醇和蒸馏水溶解后,可保存多久?

A. 低温避光可稳定保存1年。

Phos-tag® Acrylamide溶液的配制


- Q. 按照实验流程中的方法配制Phos-tag®, 结果出现混浊, 这正常吗?
- A. 正常。混浊是由于甲醇造成的,静置一会,溶液就会变得澄清。
- Q. 可否仅用水来溶解Phos-tag®?
- A. 可以仅用水溶,只是比溶解在含甲醇的水中时间长些。若不能完全溶解,离心, 取上清使用。

分子marker

Q. 可使用哪种预染marker?

A. 一般的预染marker在Phos-tag® 凝胶里条带会弯曲(如图1)。使用和光的WIDE-VIEW™ Prestained Protein Size Marker Ⅲ (产品编号 230-02461)效果会好一些, 可作为转膜效率的标记,但是无法推断分子量。请单独留出一泳道上样1 x 样品缓冲液。

图1. 预染色marker的比较

: 其他公司的预染marker (3 µL) 3、4、5 : WIDE-VIEW™Prestained

Protein Size Marker Ⅲ (3 µL) : WIDE-VIEW™Prestained Protein

Size Marker Ⅲ (5 µL) 空白Lane: 1 x 样品缓冲液 (5 μL)

: SuperSep™ Phos-tag® (50 µM).

12.5% (20mA电流)

ATP的影响

Q. 磷酸化反应液中存在ATP, 是否会对电泳造成影响?

A. ATP浓度在2.0 mM时不会有什么特殊影响。使用临界量仍未清楚。

预制胶的使用

Q. 能否将此产品与样品混合后,在普通预制胶中进行电泳?

A. 不可以。但可选择使用含有Phos-tag®的预制胶SuperSep™ Phos-tag® (参考 "8.SuperSep™ Phos-tag®")。

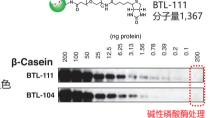
- Q. 如何区别Phos-tag® SDS-PAGE条带分离的原因是磷酸化还是目的蛋白降解?
- A. 进行普通SDS-PAGE(无Phos-tag®),确认是否有目的蛋白降解。

DNA的分离

- Q. Phos-tag® 适合用于分离 DNA 吗?
- A. 可以。参考以下文献:
 - A SNP genotyping method using phosphate-affnity polyacrylamide gel electrophoresis, *Analytical Biochemistry*, 361, 294-298 (2007), E. Kinoshita, E.Kinoshita-Kikuta, and T. Koike (The phosphate group at DNA-terminal is efficiently captured by Zn²⁺-Phos-taq.)
 - · A mobility shift detection method for DNA methylation analysis using phosphate affnity polyacrylamide gel electrophoresis, *Analytical Biochemistry*, 378, 102-104 (2008), E. Kinoshita-Kikuta, E. Kinoshita, and T. Koike
- Phos-tag® Biotin (产品相关请看 "9.Phos-tag®系列产品")

BTL-104与BTL-111的区别

- O. BTL-104与BTL-111有什么区别?
- A. 连接链(Linker)的长度不同。BTL-111灵敏度更高。


灵敏度

- Q. 检测灵敏度到什么水平?
- A. 可以达到ng级别。需要使用高发光试剂,比如ImmunoStar® LD。 ImmunoStar® LD请参考"10.相关产品"。

其他必要试剂

- Q. 除了这个产品还需要其他试剂吗?
- A. 请准备Streptavidin-conjugated HRP 溶液、ImmunoStar® 系列等化学显色试剂。

ImmunoStar®系列请参考 "10.相关产品"

RTI -104

使用次数

- Q. Phos-tag® Biotin可以使用多少次?
- A. 主要决定于使用次数以及使用量,以下实验次数仅作参考 BTL-104:130-1300次,BTL-111 1 mM 水溶液:10-100次

定量

- O. 可定量检测磷酸化蛋白吗?
- A. 根据条带的浓度可以进行半定量分析。

细胞、组织的染色

- Q. 可细胞染色或者组织染色吗?
- A. 无法检测。洗脱时会将甲醇带走,无法染色。

剥除

- Q. 能否剥除Phos-tag® Biotin中的抗体?
- A. 可以。与含有 62.5 mM Tris-HCl (pH6.8) 、2%(w/v) SDS和 1 M 2-mercaptoethanol 溶液混合后,振荡 15 分钟。将混合液用 1×TBS-T 漂洗 3 次,每次 10 分钟。

膜

- Q. 推荐使用哪种膜?
- A. 推荐使用PVDF膜。

终止反应

- Q. 使用 Phos-tag® Biotin 要求终止反应吗?
- A. 不需要,因为终止反应会降低灵敏度。

■ Phos-tag® 质谱分析试剂盒 (产品请参考 "9.其他Phos-tag®系列产品")

使用次数

- Q. 实验可以使用多少次?
- A. 如果每次用量为5 µL,至少可以使用1000次。

3种试剂的区别使用

- Q. 如何选择使用Phos-tag® MS-101L, Phos-tag® MS-101H和Phos-tag® MS-101N?
- A. Phos-tag ™ 101N 含有自然存在的Zn , 101L 与101H 分别含有Zn 的同位素⁶⁴Zn 和⁶⁸Zn。 请参考以下建议:

摸索条件时使用101N,其中含有多种同位素,结果比较详细;

鉴定磷酸基团是否存在,使用101L和101H,这些试剂分别包含 64 Zn 和 68 Zn。使用这些试剂检测同一个样品时会产生不同的荷质比。(m/e差值8)

非磷酸分子的检测

Q. 为什么无法检测出非磷酸分子的峰?

A. 为了更好区分磷酸分子与非磷酸分子的离子化效率。含Phos-tag®的样品溶液使用pH6-8的缓冲液,matrix、酚类类似弱酸性(THAP等)溶液,弱碱性的HAMAN等均适用。另外,普通阳性模式的多肽分析,所用样品溶液为酸性,matrix也为酸性。因此,磷酸化分子-Phos-tag®复合体的离子化效率急剧增加,而非磷酸化离子化效率变得很低。

Phos-tag® SDS-PAGE凝胶的样品

- Q. 如果想测定经过Phos-tag® SDS-PAGE分离得到的样品,是否必须要在凝胶消化之前去除Phos-tag®?
- A. 没有必要。SDS-PAGE结束之后根据一般的凝胶消化方法讲行操作即可。

ESI 法

Q. 能否用于ESI质谱分析?

A. 是的,可以使用。请参考下面的文献,这篇报道使用Phos-tag® MS-101N进行ESI-MS分析。在实验过

程中,使用了中性溶液,若为酸性溶液会导致Phos-tag®分离。

文献: Anal. Chem. (2008) 80, 2531-2538(MS-101N ESI-MS)

■ Phos-tag® Agarose (产品请参考"9.其他Phos-tag®系列产品")

SDS-PAGE前处理

- Q. 使用Phos-tag® Agarose纯化的样品能否直接用于SDS-PAGE?
- A. 不可以。洗脱液中包含了高浓度的盐,会使得条带弯曲,应使用SDS-PAGE样品缓冲液作为洗脱液。

重复利用

- Q. Phos-tag® Agarose可以重复使用吗?
- A. 不建议重复使用。

与 IMAC 比较

- Q. 相对于IMAC来说Phos-tag® Agarose有什么优势?
- A. Phos-tag ® Agarose 可在生理条件下(pH7.5)进行实验,实验中不需要使用还原剂或者表面活性剂,因此不会破坏磷酸化蛋白的天然构象。而且纯化的蛋白可以用于质谱和 Western Blotting。

His-tag蛋白质纯化

Q. 能用于His-tag 蛋白质纯化吗?

A. His-tag对Zn²+亲和性弱,尽可能使用GST等其他种类tag。 有报道称使用Phos-tag® Agarose无法进行蛋白质纯化,但使用Zn²+-Phos-tag® SDS-PAGE可分离His-tag蛋白质,Zn²+比His-tag对Phos-tag® 有更高的亲和性。

Q. 在制备样品时,哪些试剂可用哪些试剂不可用?

A. 参考下表。避免使用螯合剂和磷酸衍生物。

种类	试剂	是否可用	允许的浓度
还原剂	DTT	0	≤0.1 M
变性剂	尿素	0	内部实验,达到8 M时没有影响
表面活性剂	SDS	0	浓度≥0.5%会对结合产生影响
(阴离子)	脱氧胆酸钠	0	浓度≥0.25%会对结合产生影响
表面活性剂	Nonidet P40	0	≤ 1 %
(非离子)	哥子) Tween 20		≤ 1 %
表面活性剂 (两性)	CHAPS	0	≤ 0.2 %
工米亚会公二人一州加	β-甘油磷酸盐	×	不能使用
磷酸衍生物	焦磷酸盐	×	不能使用
螯合剂	EDTA	×	不能使用

参考文献

Phos-tag® Biotin

- Highly sensitive detection of protein phosphorylation by using improved Phos-tag Biotin., E Kinoshita, E Kinoshita-Kikuta, Y Sugiyama, Y Fukada, T Ozeki, and T Koike, Proteomics, Apr 2012; 12 (7): 932-7.
- Protein phosphorylation in encystment-induced Colpoda cuaulls: localization and identification of phosphoproteins., Yoichiro Sogame, Katsuhiko Kojima, Toshikazu Takeshita, Shigeki Fujiwara, SeijiMiyata, Eiji Kinoshita, and Tatsuomi Matsuoka., FEMS Microbiol Lett, Jun 2012; 331: 128 - 135.
- Novel repressor regulates insulin sensitivity through interation with Foxo1., Jun Nakae, Yongheng Cao, Fumihiko Hakuno, Hiroshi Takemori, Yoshinaga Kawano, Risa Sekioka, Takaya Abe, Hiroshi Kiyonari, Toshiya Tanaka, Juro Sakai, Shin-Ichiro Takahashi, and Hioshi Itoh., EMBO J., May 2012: 31: 2275 2295.
- Chk1 phosphorylates the tumour suppressor Mig-6, regulating the activation of EGF signalling., Ning Liu, Masaki Matsumoto, Kyoko Kitagawa, Yojiro Kotake, Sayuri Suzuki, Senji Shirasawa, Keiichi I Nakayama, Makoto Nakanishi, Hiroyuki Niida, and Masatoshi Kitagawa., *EMBO J.*, May 2012; 31: 2365 2377.
- TGFβ-activated kinase 1 (TAK1)-binding proteins (TAB) 2 and 3 negatively regulate autophagy., Giichi Takaesu, Takashi Kobayashi, and Akihiko Yoshimura, J. Biochem., Feb 2012; 151: 157 166.
- Arabidopsis heterotrimeric G protein β subunit, AGB1, regulates brassinosteroid signalling independently of BZR1., Daisuke T sugama, Shenkui Liu, and Tetsuo Takano., J. Exp. Bot., Aug 2013; 64: 3213 - 3223.

Phos-tag® 质谱分析试剂盒

- Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of phosphorylated compounds using a novel phosphate capture molecule., H Takeda, A Kawasaki, M Takahashi, A Yamada, and T Koike., Rapid communications in mass spectrometry 17.18 (2003): 2075-2081
- Formation of lysophosphatidic acid, a wound-healing lipid, during digestion of cabbage leaves., Tanaka T, Horiuchi G, Matsuoka M, Hirano K, Tokumura A, Koike T, Satouchi K., *Biosci Biotech Biochem.*, 2009;73:1293-1300.

Phos-tag® Agarose

- Enrichment of phosphorylated proteins from cell lysate using phosphate-affinity chromatography at physiological pH, *Proteomics*, 6, 5088-5095 (2006), E. Kinoshita-Kikuta, E. Kinoshita, A. Yamada, M. Endo, and T. Koike
- Improved method of phosphopeptides enrichment using biphasic phosphate-binding tag/C18 tip for versatile analysis of phosphorylation dynamics., T Nabetani, YJ Kim, M Watanabe, Y Ohashi, H Kamiguch and Y Hirabayashi., *Proteomics*, Dec 2009; 9(24): 5525-33.
- Co- and post-translational modifications of the 26S proteasomeyeast., Kikuchi J, Iwafune Y, Akiyama T, Okayama A, Nakamura H, Arakawa N, Kimura Y, and Hirano H., Proteomics. 2010;10:2769-2779.

8 . SuperSep™ Phos-tag® 预制胶

SuperSep™ Phos-tag® 是一种预制胶,预先加入了50 µmol/L的Phos-tag® Acrylamide,打开包装即可 直接使用。预制胶中含有锌(作为金属离子),在中性凝胶缓冲液中保存稳定性很好,得到的结果条带也很整齐。 全批次均经过出厂检验。

产品规格

SuperSep™ Ace

孔数	13	17
孔容积	30µL	25µL
Phos-tag® 浓度	50µmol/L	
ZnCl₂浓度	100µmol/L	
板大小	100×100×3 mm	
凝胶大小	90×85×1 mm	

这款产品为预制胶,适合用于 "EasySeparator™" 电泳槽。 在使用产品之前,参考 "SuperSep™ Ace"或者其它常用 的SDS-PAGE摸索样品的电泳条件。

SuperSep™ Ace Phos-tag®

SuperSep™ Ace Phos-tag® (50µmol/L), 12.5%, 13孔

使用例 -β-casein随时间的去磷酸化-

※WB的应用数据请看P19

磷酸化

B-casein

去磷酸化

B-casein

12% , 13孔 12.5%, 13孔 1 2 3 4 5 М 2 3

磷酸化 B=casein 去磷酸化 β-casein [电泳缓冲液] Tris-glycine-SDS电泳缓冲液

M: Wide-ViewTM Prestained Protein Size Marker III

1:0分钟 β-casein (AP处理)

2:15 分钟 β-casein (AP处理) 3:30 分钟 β-casein (AP处理)

4:45 分钟 β-casein (AP处理)

5:60 分钟 β-casein (AP处理)

[电泳条件] 35 mA 恒定电流, 60分钟 [染色] QUICK-CBB

(产品编号:299-50101)

[脱色] 去离子水(微波炉处理)

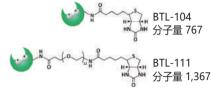
β-casein 随时间经碱性磷酸酶 (AP) 进行去磷酸化处理。使用本产品可以分 离β-casein和去磷酸化β-casein。

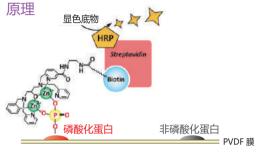
产品编号	产品名称	规 格	保 存
192-17401	SuperSep™ Phos-tag® (50 µmol/L), 6%, 13 well		
199-17391	SuperSep™ Phos-tag® (50 µmol/L), 6%, 17 well		
195-17371	SuperSep™ Phos-tag® (50 µmol/L), 7.5%, 13 well		
192-17381	SuperSep™ Phos-tag® (50 µmol/L), 7.5%, 17 well		
193-16711	SuperSep [™] Phos-tag [®] (50 μmol/L), 10%, 13 well		
190-16721	SuperSep [™] Phos-tag [®] (50 μmol/L), 10%, 17 well	r ++	\ \ \\
195-16391	SuperSep™ Phos-tag® (50 µmol/L), 12.5%, 13 well	5 块	冷藏
193-16571	SuperSep™ Phos-tag® (50 µmol/L), 12.5%, 17 well		
193-16691	SuperSep™ Phos-tag® (50 µmol/L), 15%, 13 well		
196-16701	SuperSep™ Phos-tag® (50 µmol/L), 15%, 17 well		
197-16851	SuperSep™ Phos-tag® (50 μmol/L), 17.5%, 13 well		
194-16861	SuperSep™ Phos-tag® (50 µmol/L), 17.5%, 17 well		
058-07681	Easyseperator™	1 套	室温
C C TM A	**************************************		

SuperSep™ Ace 的列表请参考P29.

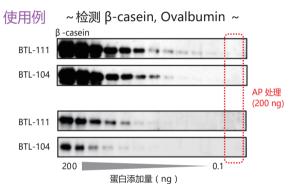
9. 其他Phos-tag®系列产品

■ Phos-tag[®] Biotin


- 检测Western Blotting磷酸化蛋白 -



Phos-tag® Biotin是与生物素结合的Phos-tag® , 无需抗磷酸化抗体。可灵敏检测PVDF膜上的磷酸化蛋白。比BTL-111S1灵敏度更高。


特点

- Phos-tag® 的特异性结合与氨基酸种 类、序列无关
 - 无特异性磷酸化抗体时的最佳选择
 - 无需特别试剂、仪器

与检测Western Blotting的抗磷酸化抗体同样的方法,检测PVDF膜上的磷酸化蛋白。

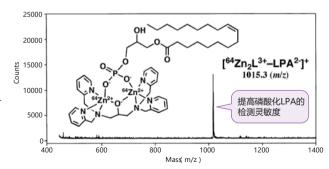
产品编号	产品名称	保 存	规 格
308-97201	Phos-tag® Biotin BTL-111 1mM 水溶液	冷藏	0.1 mL
301-93531	Phos-tag® Biotin BTL-104	冷藏	10 mg

■ Phos-tag® 质谱分析用试剂套装

- 用于MALDI-TOF/MS检测,提高检测灵敏度-

与MALDI-TOF/MS的样品混合使用。用于检测阳性磷酸化分子-Phos-tag®复合体,通常可提高小磷酸分子的检测灵敏度。3种试剂所含锌的种类不同。

特点


- 提高磷酸分子的检测灵敏度
- 不检测非磷酸分子
- 除磷酸化肽以外也适用于其他磷酸化 分子

试剂组	盒内容	分子式	分子量	规格
Phos-tag®	MS-101L	$[(C_{27}H_{29}N_6O^{64}Zn_2]^{3+}$	581.4	5 mg
Phos-tag®	MS-101H	$[(C_{27}H_{29}N_6O^{68}Zn_2]^{3+}$	589.4	5 mg
Phos-tag®	MS-101N	$[(C_{27}H_{29}N_6OZn_2]^{3+}$	584.3	10 mg

※请参考P23【3种试剂的使用区别】

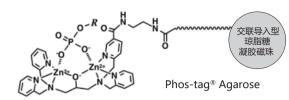
使用例

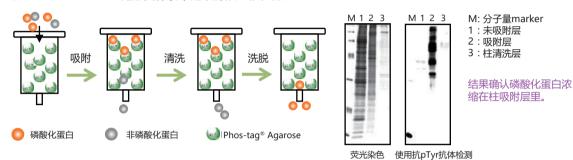
~检测Phos-tag®-磷酸化LPA复合体~

LPA²-: 1-oleoyl-L-α-lyzophosphatidate (分子量 434.2)

产品编号	产品名称	保 存	规 格
305-93551	Phos-tag® 质谱分析用试剂盒	冷蔵	1套

Phos-tag® Agarose


- 亲和层析纯化磷酸化蛋白 -


Phos-tag® Agarose是与琼脂糖结合的Phos-tag®,可分离、纯化、浓缩磷酸化蛋白和磷酸化多肽。

特点

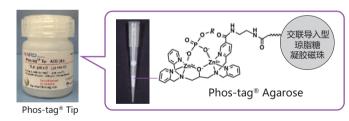
- 可在1小时内纯化磷酸化蛋白
- 可在生理条件下 (pH7.5)操作
- 不含有界面活性剂、还原剂

使用例 ~ A431 细胞裂解液中的磷酸化蛋白纯化~

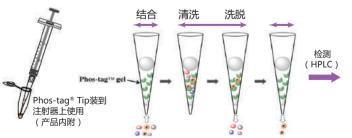


产品编号	产品名称	保存温度	规格
302-93561	Dhoa tag® Againe	\A.#	0.5 mL
208-03563	Phos-tag® Agarose	冷藏	2 ml

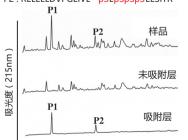
Phos-tag® Tip


-即用型浓缩磷酸化多肽的枪头-

Phos-tag®填入琼脂糖的移液枪头,即用型磷酸化多肽前处理工具



- 特 点 操作时间 < 30 min
 - 高回收率
 - 无需高价仪器



使用例子

~6 nmol β-casein 胰蛋白酶消化物的分离 ~

P1: FQpSEEQQQTERELQDK P2 : RELEELDVPGEIVE pSLpSpSpSEESITR

洗脱时间 (0-22 min)

产品编号	产品名称	保 存	规 格
387-07321	Phos-tag® Tip	冷藏	8支

10 . 相关产品

■ Phos-tag® SDS-PAGE 凝胶配制试剂

产品编号	产品名称	规格	保存条件	用途
015-25635	30w/v% Acrylamide/Bis Mixed Solution (29:1)	500 mL	冷藏	Sol.A。30%T , 3.3%C
315-01203		1 g		用于含琼脂糖的低灵敏度凝胶制备。适合高
319-01201	Agarose H(高强度型)	10 g	室温	强度、低琼脂糖浓度或浓度高的大
317-01202		25 g		型核酸片段电泳。
311-90271	100/ CDC Calutian	100 mL		Sol.D
313-90275	10% SDS Solution	500 mL	室温	S0I.D
134-15302	Manganese(II) Chloride Tetrahydrate	25 g	室温	分子生物学用,纯度99.0%以上。用于制备
136-15301	manganese(n) emenae renanyarate	100 g	<u> </u>	Sol.F。
268-01902	Zinc Chloride	25 g	室温	分子生物学用,纯度98.0%以上。用于制备 Sol.M。
345-04741	Bis-Tris	100 g	室温	用于制备Sol.N。
196-01372	Codium Llydrogonoulfito (注意地共和)	25 g		
198-01371	Sodium Hydrogensulfite (试剂特级)	100 g	阴凉处 (25℃以下)	用于制备Sol.O。
190-16461	Sodium Hydrogensulfite (分子生物学用)	100 g	(= ==,,, ,	
345-01804	MOPS	100 g	室温	
341-01801	WOF3	250 g	- 三	用于制备Sol.P。
341-08241	MOPS,分子生物学用	100 g	室温	円」前田301.7。
343-08245	MOF3,分了主物子用	500 g	- 三/	
192-11041	Separating Gel Buffer Solution(*4)	250 mL	冷藏	Sol.B、D,用于分离凝胶(含有SDS)
199-11051	Stacking Gel Buffer Solution(*4)	250 mL	冷藏	Sol.C、D,用于浓缩凝胶(含有SDS)
205-06313	N,N,N',N'-Tetramethylethylenediamine	25 mL	阴暗处	TEMED
019-15922	10w/v% Ammonium Peroxodisulfate Solution	25 mL	冷藏	Sol.G。即开即用十分方便。

■ 预混合缓冲液

产品编号	产品名称	规格	保存条件	用途
184-01291	Running Buffer Solution(*10)	1 L	冷藏	Sol.H
312-90321	SDS-PAGE 10x Running Buffer	1 L	室温	Sol.H
318-90323	SDS-PAGE TOX KUITHING BUTTET	5 L	至/通	301.H
192-16801	SDS-PAGE Buffer, pH8.5	5 L	阴凉处	Sol.H。无需稀释 , 1 x buffer。
200-17071	Tricine Running Buffer Solution(×10)	1 L	冷藏	组分: 0.5 M Tris/0.5 M 甘氨酸/ 1% SDS
196-11022	Sample Buffer Solution(2ME+)(×2)	25 mL	冷藏	SDS-PAGE(Laemml 法)用样品缓冲液,
191-13272	Sample Buffer Solution (2ME+) (X4)	25 mL	冷藏	有2- 巯基乙醇。
199-16132	Sample Buffer Solution with 3-Mercapto- 1,2-propanediol (×2)	25 mL	冷藏	含有可代替2-ME 的
	Sample Buffer Solution with 3-Mercapto- 1,2-propanediol (×4)	25 mL	冷藏	非剧毒还原剂3- 巯基-1,2- 丙二醇。
	AquaBlot™ 10×Tris-Glycine-SDS Transfer Buffer	1 L	室温	转膜时使用。含0.05% SDS。

■ 染色试剂

产品编号	产品名称	规格	保存条件	用途
174-00553	Ouick CBB Plus	250 mL	室温	可替代Sol.K,不用有机溶剂,
178-00551	Quick CDD Flus	1 L		最快10 分钟染色、脱色。
299-50101	Quick-CBB	2 L	室温	可替代Sol.K 使用。
299-58901	Silver Stain MS Kit	20 tests	冷藏	省去戊二醛处理操作, 因此蛋白几乎不会被化学修饰。 灵敏度高,可检测低至纳克级的蛋白。
299-13841	Silver Stain Kit Wako	for 10 gels	冷藏	灵敏度是CBB 法的50-100 倍。
291-50301	Silver Stain II Kit Wako	for 10 gels	冷藏	简便、染色快。里面的终止液可调整浓度。
293-57701	Negative Gel Stain MS Kit	20 tests	室温	质谱分析、免疫印迹用。

■ 蛋白 Marker

产品编号	产品名称	规格	保存条件	用途
236-02463		25 μL		
230-02461	WIDE-VIEW [™] Prestained Protein Size Marker Ⅲ	500 μL	冷冻	用于Phos-tag ™ SDS-PAGE 可保持条带 不弯曲
234-02464	- 	500 μL×3		

■ 去磷酸化酶

产品编号	产品名称	规格	保存条件	用途
018-10693	Alkaline Phosphatase	50 U	冷冻	蛋白样品去磷酸化
012-10691	(for Biochemistry)	100 U	1女/赤	虫口仟吅 乙解敌化

■ 阳性对照(用于检测Phos-tag® SDS-PAGE凝胶的分离性能)

产品编号	产品名称	规格	保存条件	用途
038-23221	α-Casein, from Bovine Milk,	1 mg	冷冻	磷酸化α-casein与去磷酸化α-casein的混
034-23223	Dephosphorylated	10 mg	は歩	合物

■ 电泳装置、预制胶

产品编号	产品名称	规格	保存条件	用途
058-07681	EasySeparator	1 set	室温	SuperSep [™] 系列电泳槽
195-15171	SuperSep (TM) Ace, 6%, 13well	10 EA	冷藏	
198-14941	SuperSep (TM) Ace, 7.5%, 13well	10 EA	冷藏	
191-14931	SuperSep (TM) Ace, 7.5%, 17well	10 EA	冷藏	
195-14951	SuperSep (TM) Ace, 10%, 13well	10 EA	冷藏	使用SuperSep [™] Phos-tag [®] 时,作为
192-14961	SuperSep (TM) Ace, 10%, 17well	10 EA	冷藏	对照组一起使用
199-14971	SuperSep (TM) Ace, 12.5%, 13well	10 EA	冷藏	
196-14981	SuperSep (TM) Ace, 12.5%, 17well	10 EA	冷藏	
193-14991	SuperSep (TM) Ace, 15%, 13well	10 EA	冷藏	
190-15001	SuperSep (TM) Ace, 15%, 17well	10 EA	冷藏	

Western Blotting试剂

产品编号	产品名称	规格	保存条件	用途	
296-69901		200 cm ²		高灵敏度Western Blotting化学显色试剂。	
292-69903	ImmunoStar® LD	1000 cm ²	冷藏	(fg级)。操作简便,两液等量混合。A液、B液	
290-69904		2000 cm ²		各100mL (2000 cm ²)	
291-72401		200 cm ²			
297-72403	ImmunoStar® Zeta	1000 cm ²	冷藏	冷藏	检测飞克低等-中等级的蛋白质。发光信号稳定 性好,具有持续性。
295-72404		2000 cm ²		T.	
295-75101		200 cm ²		注重性价比、显色稳定的中灵敏度试剂。为了	
291-75103	ImmunoStar® Basic	1000 cm ²			能持续稳定发光,曝光时间可变,发光信号可简 便调节。广泛的蛋白质量范围,能得到较好的线
299-75104		2000 cm ²		性校正曲线	
294-68601		2次		Western Blotting信号增强试剂。有一抗反应	
290-68603	Immuno-enhancer	10次	冷藏	的试剂A与二抗反应的试剂B。原液直接用作抗	
298-68604		40次		体稀释液。	

【发光强度】

ImmunoStar® LD 其他公司 ImmunoStar® Zeta 12345 1 2 3 4 5 1 2 3 4 5

泳首 FLAG-BAP 20 ng 1 2 10 ng 3 5 ng 4 2.5 ng 5 1.3 na

ImmunoStar® LD

样品:FLAG-BAP

擬散:SuperSepTM Ace, 10-20%, 17孔(产品编号: 198-15041) 一抗:抗DYKDDDDK tag, 单克隆抗体(产品编号: 014-22383), 2000倍稀释 二抗:小鼠IgG(H+L), 兔, IgG分离, 过氧化物结合, 20000倍稀释

曝光时间: 60秒 (LAS4000, standard)

宝柏为您提供磷酸化研究指导手册(激酶指导手册 ver.2、抑制剂指导手册①),如需要 **请联系我们。**

Kinase Assay Screening Kit (ADP荧光测定试剂盒)

Fluorospark® Kinase/ADP Multi-Assay Kit 是Wako与东京大学创药机构共同开发的ADP荧光测定试剂盒。 具有高通量筛选(HTS)所需的高灵敏度、高准确度、低成本、简便等特性。本试剂盒不仅可检测激酶,同 时可用于检测产生ADP的酶(ATP酶、乙酰基-CoA羧化酶等)的活性。

【特点】

- ·适合终点 (endpoint) 和实时实验
- ·优异的Z'-factor数据(数据差异小)
- ·高灵敏度检测ADP量
- ·检测直到ADP 30µmol/L仍可保持线性关系
- ·一步反应,检测时间短(~30分钟)
- ・成本较低

【试剂盒内容】

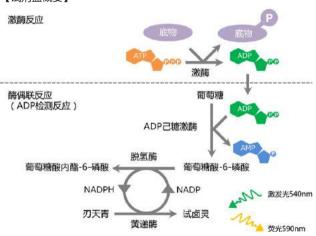
①底物液

②酶液

③刃天青溶液

④还原剂封闭剂

⑤反应终止液 (停止偶联反应)


⑥10mmol/L ATP溶液 (激酶底物、制作校正曲线)

配制2×检测液

⑦10mmol/L ADP溶液 (制作校正曲线)

【试剂盒概要】

通过激酶反应产生的ADP,转换成红色荧光物质试卤灵进行定量,从而测定激酶活性。

产品编号	产品名称	规 格	等级	保存
291-77401	Fluorospark ® Kinase/ADP Multi-Assay Kit	1000 次	用于酶活性测定	冷冻
297-77403		10000次		

Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling[J].Nature communications, 2016, 7, Shindo Y, Iwamoto K, Mouri K, et al.

PTEN modulates EGFR late endocytic trafficking and degradation by dephosphorylating Rab7[J]. Nature communications, 2016. 7 . Shinde S R. Maddika S.

Feedback control of ErbB2 via ERK-mediated phosphorylation of a conserved threonine in the juxtamembrane domain[J]. Scientific Reports, 2016, 6: 31502, Kawasaki Y, Sakimura A, Park C M, et al.

Plastid-nucleus communication involves calcium-modulated MAPK signalling[J]. Nature Communications, 2016, 7, Guo H,

Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation[J]. Nature communications, 2016, 7, Mitterer V, Murat G, Réty S, et al.

Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors[J]. Biochemical Journal, 2016: BCJ20160557, Ito G, Katsemonova K, Tonelli F, et al.

Analysis of phosphorylation of the myosin targeting subunit of smooth muscle myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. The FASEB Journal, 2016, 30(1 Supplement): 1209.1-1209.1, Walsh M P, MacDonald J A, Sutherland C. Using Phos-Tag in Western Blotting Analysis to Evaluate Protein Phosphorylation[J]. Kidney Research: Experimental Protocols, 2016: 267-277, Horinouchi T, Terada K, Higashi T, et al.

The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method[J]. The American journal of pathology, 2016, 186(2): 398-409, Kimura T, Hatsuta H, Masuda-Suzukake M, et al. Phos-tag SDS-PAGE resolves agonist-and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts[J]. Journal of Molecular and Cellular Cardiology, 2016, Qiu W, Steinberg S F.

Analysis of phosphorylation of the myosin-targeting subunit of myosin light chain phosphatase by Phos-tag SDS-PAGE[J]. American Journal of Physiology-Cell Physiology, 2016, 310(8): C681-C691, Sutherland C, MacDonald J A, Walsh M P. Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase[J]. Biosensors and Bioelectronics, 2016, 86: 508-515, Zhou Y, Yin H, Li X, et al. Validation of Cis and Trans Modes in Multistep Phosphotransfer Signaling of Bacterial Tripartite Sensor Kinases by Using Phos-Tag SDS-PAGE[J]. PloS one, 2016, 11(2): e0148294, Kinoshita-Kikuta E, Kinoshita E, Eguchi Y, et al.

Phosphopeptide Detection with Biotin-Labeled Phos-tag[J]. Phospho-Proteomics: Methods and Protocols, 2016: 17-29, Kinoshita-Kikuta E, Kinoshita E, Koike T.

A Phos-tag SDS-PAGE method that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1[J]. Proteomics, 2016, Kinoshita E, Kinoshita-Kikuta E, Kubota Y, et al.

Difference gel electrophoresis of phosphoproteome: U.S. Patent Application 15/004,339[P]. 2016-1-22, Tao W A, Wang L. ERK1/2-induced phosphorylation of R-Ras GTPases stimulates their oncogenic potential[J]. Oncogene, 2016. Frémin C. Guégan J P, Plutoni C, et al.

Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model[J]. PloS one, 2016, 11(2): e0148574, Maiden S L, Petrova Y I, Gumbiner B M.

Serine 231 and 257 of Agamous-like 15 are phosphorylated in floral receptacles[J]. Plant Signaling & Behavior, 2016, 11(7): e1199314, Patharkar O R, Macken T A, Walker J C.

A small molecule pyrazolo [3, 4-d] pyrimidinone inhibitor of zipper-interacting protein kinase suppresses calcium sensitization of vascular smooth muscle[J]. Molecular pharmacology, 2016, 89(1): 105-117, MacDonald J A, Sutherland C, Carlson D

The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2/CPL1 interacts with eIF4AIII and is essential for nonsense-mediated mRNA decay in Arabidopsis[J]. The Plant Cell, 2016: TPC2015-00771-RA, Chen T, Qin T, Ding F, et al. Vasorelaxant Effect of 5'-Methylthioadenosine Obtained from Candida utilis Yeast Extract through the Suppression of Intracellular Ca2+ Concentration in Isolated Rat Aorta[J]. Journal of agricultural and food chemistry, 2016, 64(17): 3362-3370, Kumrungsee T, Akiyama S, Saiki T, et al.

Inhibition of deubiquitinating activity of USP14 decreases tyrosine hydroxylase phosphorylated at Ser19 in PC12D cells[J]. Biochemical and biophysical research communications, 2016, 472(4): 598-602, Nakashima A, Ohnuma S, Kodani Y, et al. Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity[J]. The Journal of Neuroscience, 2016, 36(19): 5299-5313, Bertling E, Englund J, Minkeviciene R, et al.

AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA[J]. Autophagy, 2016, 12(2): 432-438, Kaushik S, Cuervo A M.

Myocardin-related transcription factor a and yes-associated protein exert dual control in G protein-coupled receptor-and RhoA-mediated transcriptional regulation and cell proliferation[J]. Molecular and cellular biology, 2016, 36(1): 39-49, Olivia M Y, Miyamoto S, Brown J H.

Extensive phosphorylation of AMPA receptors in neurons[J]. Proceedings of the National Academy of Sciences, 2016, 113(33): E4920-E4927, Diering G H, Heo S, Hussain N K, et al.

The transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis[J]. The Plant Cell, 2016, 28(2): 557-567, Yamamoto Y, Negi J, Wang C, et al.

The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP[J]. Journal of molecular and cellular cardiology, 2016, 90: 1-10, Kimura T E, Duggirala A, Smith M C, et al.

Atg13 is essential for autophagy and cardiac development in mice[J]. Molecular and cellular biology, 2016, 36(4): 585-595,

Kaizuka T, Mizushima N.

The ChrSA and HrrSA two-component systems are required for transcriptional regulation of the hemA promoter in Corynebacterium diphtheriae[J]. Journal of Bacteriology, 2016: JB. 00339-16, Burgos J M, Schmitt M P. Intergenic Variable-Number Tandem-Repeat Polymorphism Upstream of roca Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes[J]. Infection and Immunity, 2016, 84(7): 2086-2093, Zhu L, Olsen R J, Horstmann N, et

Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy[J]. Reproductive Toxicology, 2016, 62: 62-70, Ejdesjö A, Brings S, Fleming T, et al.

Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression[J]. Proceedings of the National Academy of Sciences, 2016, 113(23): 6490-6495, Chuang L S H, Khor J M, Lai S K. et al.

Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence[J]. Journal of experimental botany, 2016: erw107, Cho H Y, Wen T N, Wang Y T, et al. Temporal regulation of lipin activity diverged to account for differences in mitotic programs[J]. Current Biology, 2016, 26(2): 237-243 , Makarova M, Gu Y, Chen J S, et al.

http://www.wako-chem.co.jp/siyaku/

全国代理

宝柏•中国

www. boppard.cn info@boppard.cn

北京 Tel: 010 85804838 上海 Tel: 021 62884751 广州 Tel: 020 87326381 香港 Tel: 852 27999019