生命科学
化学
分析
仪器
耗材
细胞培养基质 层粘连蛋白511
iMatrix-511

191589873963.png细胞培养基质 层粘连蛋白511

iMatrix-511



271558930212.png


271558930246.png



◆什么是层粘连蛋白511?


1715161779488306.jpg

  层粘连蛋白是存在于动物基底膜的一种细胞外基质,已知其与细胞粘附和增殖息息相关。本产品是与层粘连蛋白511-E8片段有同一序列的重组蛋白,是可以促进各种细胞粘附和伸展的培养基质。

  大阪大学和京都大学共同研究开发,本产品已证明在操作难度非常大的人iPS细胞和人ES细胞培养中,也可以安全且高效地进行细胞培养。



● 细胞培养的准备非常简单!

● 可用于多种类型的细胞培养!

● 无论分离细胞的状态如何,可实现细胞的高生存率和细胞增殖的高效性!

● 重组蛋白(CHO-S细胞来源),所以混入杂质的危险性低!

● 溶液型试剂,无需溶解,稀释后可直接使用


2.jpg


  层粘连蛋白511是由α5链、β1链和γ1链组成的层粘连蛋白。层粘连蛋白511-E8是层粘连蛋白片段,但其具有与层粘连蛋白全长分子相同的α6β1整合蛋白连接功能。

  本产品是Nippi根据大阪大学和京都大学的专利技术生产贩卖的。



使用方法


  用PBS(-)稀释本产品,按照0.1~0.5 μg/cm2加入细胞培养器皿中。

  ※由于细胞种类和细胞株的不同、使用的培养基种类不同,添加的最适剂量会有差异,

     初次使用时,按照0.5 μg/cm2添加培养容器中,逐渐调整至最佳使用浓度。

         

  室温下孵育3小时,然后去掉溶液。

         

  添加细胞和培养液,进行细胞培养。

● 培养ES/iPS细胞时,可进行无饲养层和单细胞继代培养



使用案例


1715161780808947.jpg


  使用本产品对表皮细胞培养0.5小时,对血管内皮细胞培养1小时。

  (a) 表皮细胞,培养0.5小时
          左(无涂层):大部分细胞未贴壁。
          右(iMatrix):多数细胞贴壁并成伸展状态。

  (b) 血管内皮细胞,培养1小时
          左(无涂层):有贴壁的细胞,但大部分多为圆形。
          右(iMatrix):较少观察到圆形细胞,几乎所有的细胞表现出了很好的伸展性。

          实验人员: (株)Nippi BioMatrix研究所 藤崎



iMatrix-511与iMatrix-511 silk的区别



iMatrix-511

iMatrix-511 silk

生产系统

转基因CHO-S细胞

转基因蚕生产系统

提纯材料

CHO-S细胞培养上清

蚕蛹蛋白

产品等级

实验研究用* *有临床用级别

实验研究用

导入基因

人层粘连蛋白511-E8片段

纯度

95%以上

浓度

0.5 mg/mL

解离常数

10 nM以下

使用期限

生产后2年内

iPS细胞培养能力

添加0.5 μg/cm2到培养容器中,可用于iPS细胞的维持培养



产品列表


产品编号

生产商编号

产品名称

包装

385-07361

892011

iMatrix-511 solution

(0.5 mg/mL)

层粘连蛋白511-E8片段,

溶液(0.5 mg/mL)

175 µg×2(350 µL×2)

381-07363

892012

175 µg×6(350 µL×6)

 

※ 本页面产品仅供研究用,研究以外不可使用。


点击此处计算实验中iMatrix-511使用量

点击此处进一步获取技术咨询

点击此处下载产品宣传页


iMatrix-511, iMatrix-511 silk


Q1. 产品是以什么样的状态销售的?

A1. 产品是以液态销售的。

一支试管里密封装有0.5 mg/mL浓度的175 μg的细胞培养外基质(层粘连蛋白511-E8片段)。

※iMatrix-511的冻干产品已于2015年3月停止生产。

 


Q2. 产品的存储条件和有效期是什么?

A2. 产品的储存条件为,冷藏保存在2-15°C。(推荐4°C)

产品的有效期,请参考下表。


产品

保质期

iMatrix-511

自生产后两年内

iMatrix-511silk

自生产后两年内

iMatrix-511MG

自生产后两年内


※具体的有效期详见产品外包装。

 


Q3. 可以冷冻保存吗?

A3. 不可以冷冻保存。

 


Q4. 产品的纯度是多少?

A4. 纯度为95%以上。

 


Q5. 培养hES/hiPS细胞时使用什么培养基最好?

A5. 宫崎等的论文(Nature communications, 3(1236), 1-10, 2012)、(Scientific Reports, 7, 41165, 2017)中,使用了以下的培养基。

・mTeSR1,TeSR2,TeSR-E8 (STEMCELL Technologies)
・Stem Pro hESC SFM (Thermo Fisher Scientific)
・StemFit AK03 (Ajinomoto)

中川等的论文(Scientific Reports, 4(3594), 1-7, 2014)中使用了以下的培养基。

・StemFit (Ajinomoto)

文献中使用的培养基都出现了良好的结果。

 


Q6. 培养iPS细胞时,最佳的涂层浓度是多少?

A6. 最佳的涂层浓度根据细胞株的不同也会有所不同。

最初请从浓度0.5 μg/cm2开始尝试,请根据您使用的细胞株在浓度0.1~1.5 μg/ cm2之间考虑。

另外,还有文献报道了新的不以涂层包被的添加法。

Miyazaki et al. Scientific Reports, 7, 41165, (2017)


 

Q7. 请教我使用iMatrix-511时,培养iPS细胞的步骤。

A7. 使用iMatrix-511时,ES/iPS细胞的扩增培养步骤,传代操作,请参考以下的链接。

(扩增培养步骤 )

(传代操作的视频)

 


Q8. 培养iPS细胞时,需要Rock Inhibitor(Y-27632)吗?

A8. 在中川等的论文(Scientific Reports, 4(3594), 2014)中,介绍了只有在传代时添加Rock Inhibitor,更换培养基的时候不需使用。

 


Q9. 培养iPS细胞时可以单细胞传代吗。

A9. 可以。

※使用iMatrix-511时,ES/iPS细胞的扩增培养步骤,传代操作,请参考以下的链接。

(扩增培养步骤 )

(传代操作的视频)

也可以参考中川等的论文(Scientific Reports, 4(3594), 2014)。

 


Q10. 传代时使用什么细胞分离液?

A10. 可使用胰蛋白酶。

※使用iMatrix-511时,ES/iPS细胞的扩增培养步骤,传代操作,请参考以下的链接。

(扩增培养步骤)

(传代操作的视频)

也可以参考中川等的论文(Scientific Reports, 4(3594), 2014)。

 


Q11. 可以使用小鼠的iPS细胞吗?

A11. 由于没有小鼠iPS细胞的培养数据,所以无法回答。

 


Q12. 这个产品与基质胶有什么不同?

A12. 基质胶含有小鼠EHS肉瘤来源的层粘连蛋白-111。另外还含有层粘连蛋白以外的分子。

iMatrix-511是将在CHO-S细胞中表达的层粘连蛋白511-E8片段高度纯化后的重组蛋白。

iMatrix-511silk是从蚕结的茧中高纯度纯化层粘连蛋白511-E8片段的重组蛋白。

已知人ES细胞和iPS细胞是通过细胞膜受体(特别是α6β1整联蛋白)粘附于层粘连蛋白-511。

已知人ES细胞和iPS细胞对层粘连蛋白-511具有高粘附活性。这使得用iMatrix-511/iMatrix-511silk可以使iPS细胞在单细胞状态下传代。

在宫崎等的论文中(Nature communications, 3(1236), 1-10, 201),5次传代后(30天后)的细胞数扩增效率约为基质胶的200倍。


参考文献



分类

文献信息

主题

人多能干细胞(hPSC)的确立

Miyazaki et al. Nat. Commun.3:1236, (2012)

证实用作hPSC的培养基质的有效性

Nakagawa et al. Sci. Rep4:3594, (2014)

确立医疗等级的hPSC

Takashima et al. Cell.158(6):1254-69, (2014)

促进向hPSC的基质状态的转移

Miyazaki et al. Sci. Rep.7:41165, (2017)

采用无需涂层操作的添加法培养hPSC

Sekine et al. Stem Cell Res.24:40-43, (2017)

确立疾病特异性的hPSC

Tan et al. Stem Cell Res24:12-15, (2017)

Ishida et al. Sci. Rep8(1), 310, (2018)

利用hPSC的基因编辑建立遗传性疾病模型

Kim et al. Nature Communications9(1), 939, (2018)

Sakai-Takemura et al. Sci. Rep8, 6555, (2018)

悬浮培养由hPSC分化的肌肉前体细胞

由hPSC分化衍生的细胞

Doi et al. Stem Cell Reports2(3):337-50, (2014)

多巴胺产生神经元

Ishikawa et al. Hum. Mol. Genet.25(23):

5188-5197, (2016)

Nishimura et al. Stem Cell Reports.6(4):

511-524, (2016)

Samata et al. Nat. Commun7:13097, (2016)

Kikuchi et al. Nature548(7669):592-596,   (2017)

Morizane et al. Nat. Commun.8(1):385, (2017)

Kikuchi et al. J. Neurosci. Res.95(9):1829-37, (2017)

Goparaju et al. Sci. Rep7:42367, (2017)

运动神经元

Burridge et al. Nat. Methods.11(8):855-60,    (2014)

心肌细胞

Sougawa et al. Sci. Rep,8(1), 3726, (2018)

Yamauchi et al. BBRC495(1), 1278-1284,      (2018)

心室肌细胞

Akiyama et al. Sci. Rep8(1), 1189, (2018)

骨骼肌细胞

Saito et al. Stem Cell Res Ther9(1), 12, (2018)

成骨细胞

Uchimura et al. Stem cell research25, 98-106, (2017)

成肌细胞

Hayashi et al. Nature.531(7594):376-80, (2016)

视觉细胞

Hayashi et al. Nat. Protoc.12(4):683-696, (2017)

角膜上皮细胞

Takayama et al. BBRC474(1):91-96, (2016)

胆管上皮细胞

Takayama et al. Hepatol Commun,1(10), 1058-1069, (2017)

肝实质细胞

Takayama et al. Biomaterials, (2018)

Takebe et al. Cell Reports21(10), 2661-2670, (2017)

肝细胞

Tan et al. Stem Cell Reports11:1-11, (2018)

Camp et al. Nature. 546(7659):533-38, (2017)

定形内胚层细胞

Zhang et al. Stem Cell Reports10(2), 1–14, (2018)

后内胚层前体细胞

Tanigawa et al. Cell reports15(4), 801-813, (2016)

肾单位前体细胞(胎肾细胞)

Musah et al. Nat.Biomed.Eng.1:0069, (2017)

肾小球上皮细胞

Musah et al. Nature protocols,13(7):1662,    (2018)

Mae et al. BBRC495(1), 954-961, (2018)

输尿管芽组织

Oshima et al. BBRC497(2), 719-725, (2018)

血细胞・血管内皮常见前体细胞

Taguchi et al. Cell Stem Cell21, (2017) 

*培养hPSC用于分化肾单位前体细胞(胎肾细胞)

Kawamura et al. Stem Cell Reports.6(3):312-20,(2016)

*培养hPSC用于分化心肌细胞

Sasaki et al. Cell Stem Cell.17(2):178-94, (2015)

*培养hPSC用于分化生殖细胞

Kojima et al. Cell Stem Cell.21(4):517-532,    (2017)

Furuta et al. PLoS One9(12):e112291, (2014)

*培养hPSC用于分化间充质细胞

人原代细胞的培养

Okumura et al. Invest. Ophth. Vis. Sci.56(5):2933-42, (2015)

人角膜内皮细胞

Hongo et al. Invest. Ophth. Vis. Sci.58(9):3325-34, (2017)

Polisetti et al. Sci. Rep.7(1):5152, (2017)

人角膜边缘上皮前体细胞

Ishii et al. Stem Cell Reports10, 1-15, (2018)

卫星细胞

层粘连蛋白-整合素相互作用的分子机制

Ido et al. J. Biol. Chem282(15): 11144-54,    (2007)


Ido et al. J. Biol. Chem.283(42): 28149-57,    (2008)

Taniguchi et al. J. Biol. Chem284(12): 7820-31, (2009)

Taniguchi et al. BBRC.487(3): 525-531, (2017)

Takizawa et al. Sci Adv.3(9) :e1701497, (2017)



英文论文


[1]

Ayabe, H., Anada, T., Kamoya, T., Sato, T., Kimura, M., Yoshizawa, E., Kikuchi, Shunyuu., Ueno, 

Yasuharu., Sekine, keisuke., J. Gray Camp., Treutlein, B., Ferguson, Autumn., Suzuki, Osamu., 

Takede, Takanori.. Optimal Hypoxia Regulates Human iPSC-Derived Liver Bud Differentiation 

through Intercellular TGFB Signaling. Stem Cell Reports11, 1-11, (2018)

 

[2]

Musah, S., Dimitrakakis, N., Camacho, D. M., Church, G. M., Ingber, D. E.. Directed differentiation 

of human induced pluripotent stem cells into mature kidney podocytes and establishment of a 

lomerulus Chip. Nature protocols13(7), 1662, (2018)

 

[3]

Ishii, K., Sakurai, H., Suzuki, N., Mabuchi, Y., Sekiya, I., Sekiguchi, K., Akazawa, C.. Recapitulation of Extracellular LAMININ Environment Maintains Stemness of Satellite Cells In Vitro. Stem Cell 

Reports10, 1-15, (2018)

 

[4]

Ishida, K., Xu, H., Sasakawa, N., Lung, M. S. Y., Kudryashev, J. A., Gee, P., & Hotta, A.. Site-specific 

randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in 

human cells. Scientific Reports8(1), 310, (2018)

 

[5]

Takayama, K., Hagihara, Y., Toba, Y., Sekiguchi, K., Sakurai, F., Mizuguchi, H.. Enrichment of high-

functioning human iPS cell-derived hepatocyte-like cells for pharmaceutical research. 

Biomaterials, (2018)

 

[6]

Akiyama, T., Sato, S., Chikazawa-Nohtomi, N., Soma, A., Kimura, H., Wakabayashi, S., Ko, S.B., Ko, M. S.. Efficient differentiation of human pluripotent stem cells into skeletal muscle cells by 

combining RNA-based MYOD1-expression and POU5F1-silencing. Scientific Reports8(1), 1189, (2018)

 

[7]

Saito, A., Ooki, A., Nakamura, T., Onodera, S., Hayashi, K., Hasegawa, D., Okudaira,T., Watanabe, K., Kato, H., Onda, T., Watanabe, A., Kosaki, K., Nishimura, K., Ohtaka, Manami., Nakanishi, M., 

Sakamoto, T., Yamaguchi, A., Sueishi, K., Azuma, T.. Targeted reversion of induced pluripotent 

stem cells from patients with human cleidocranial dysplasia improves bone regeneration in a rat 

calvarial bone defect model. Stem Cell Research & Therapy9(1), 12, (2018)

 

[8]

Yamauchi, K., Li, J., Morikawa, K., Liu, L., Shirayoshi, Y., Nakatsuji, N., Elliott, A. D., Hisatome, I., 

Suemori, H..Isolation and characterization of ventricular-like cells derived from NKX2-5 eGFP/w 

and MLC2v mCherry/w double knock-in human pluripotent stem cells. Biochemical and 

Biophysical Research Communications495(1), 1278-1284, (2018)

 

[9]

Mae, S., Ryosaka, M., Toyoda, T., Matsuse, K., Oshima, Y., Tsujimoto, H., Okumura, S., Shibasaki, A., Osafune, K.. Generation of branching ureteric bud tissues from human pluripotent stem cells. 

Biochemical and biophysical research communications495(1), 954-961, (2018)

 

[10]

Kagihiro, M., Fukumori, K., Aoki, T., Ungkulpasvich, U., Mizutani, M., Viravaidya-Pasuwat, K.,& 

Kino-oka, M.. Kinetic analysis of cell decay during the filling process: Application to lot size 

determination in manufacturing systems for human induced pluripotent and mesenchymal stem cells. Biochemical Engineering Journal131, 31-38, (2018)

 

[11]

Zhang, R. R., Koido, M., Tadokoro, T., Ouchi, R., Matsuno, T., Ueno, Y., Sekine, K., Takebe, T., 

Taniguchi, H.. Human iPSC-Derived Posterior Gut Progenitors Are Expandable and Capable of 

Forming Gut and Liver Organoids. Stem Cell Reports10(2), 1?14, (2018)

 

[12]

Oshima, K., Saiki, N., Tanaka, M., Imamura, H., Niwa, A., Tanimura, A., Nagahashi, A., Hirayama, A., Okitac, K., Hotta, A., Kitayama, S., Osawa, M., Kaneko, S., Watanabe, A., Asaka, I., Fujibuchi, W., 

Imai, K., Yabe, H., Kamachi, Y., Hara, J., Kojima, S., Tomita, M., Soga, T., Noma, T., Nonoyama, S., 

Nakahata, T., Saito, MK.. Human AK2 links intracellular bioenergetic redistribution to the fate of 

hematopoietic progenitors. Biochemical and Biophysical Research Communications497(2), 719-

725, (2018)

 

[13]

Sougawa, N., Miyagawa, S., Fukushima, S., Kawamura, A., Yokoyama, J., Ito, E., Harada, A., 

Okimoto, K., Mochisuki-Oda, N., Saito, A., Sawa, Y.. Immunologic targeting of CD30 eliminates 

tumourigenic human pluripotent stem cells, allowing safer clinical application of hiPSC-based cell therapy. Scientific Reports8(1), 3726, (2018)

 

[14]

Yasuda, S. Y., Ikeda, T., Shahsavarani, H., Yoshida, N., Nayer, B., Hino, M., Vartak-Sharma, N.,

Suemori, H., Hasegawa, K.. Chemically defined and growth-factor-free culture system for the 

expansion and derivation of human pluripotent stem cells. Nature Biomedical Engineering2(3), 

173, (2018)

 

[15]

Kim, S. I., Matsumoto, T., Kagawa, H., Nakamura, M., Hirohata, R., Ueno, A., Ohishi, M., Sakuma, T., Soga, T., Yamamoto, T., Woltjen, K.. Microhomology-assisted scarless genome editing in human 

iPSCs. Nature Communications9(1), 939, (2018)

 

[16]

Hayashi, R., Ishikawa, Y., Katori, R., Sasamoto, Y., Taniwaki, Y., Takayanagi, Tsujikawa, M., 

Sekiguchi, K., Quantock, A. J., Nishida, K. . Coordinated generation of multiple ocular-like cell 

lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nature 

Protocols12(4), 683-696, (2017)

 

[17]

Kikuchi, T., Morizane, A., Okita, K., Nakagawa, M., Yamakado, H., Inoue, H., Takahashi, R., 

Takahashi, J. . Idiopathic Parkinson's disease patient‐derived induced pluripotent stem cells 

function as midbrain dopaminergic neurons in rodent brains. Journal of Neuroscience Research

95(9),1829-37, (2017)

 

[18]

Miyazaki, T., Isobe, T., Nakatsuji, N., & Suemori, H. . Efficient Adhesion Culture of Human 

Pluripotent Stem Cells Using Laminin Fragments in an Uncoated Manner. Scientific Reports7

(41165), 1-8, (2017)

 

[19]

Goparaju, S. K., Kohda, K., Ibata, K., Soma, A., Nakatake, Y., Akiyama, T., Wakabayashi, S., 

Matsushita, M., Sakota, M., Kimura, H., Yuzaki, M., Shigeru B. H. Ko & Minoru S. H. Ko. . Rapid 

differentiation of human pluripotent stem cells into functional neurons by mRNAs encoding 

transcription factors. Scientific Reports7, 42367, (2017)

 

[20]

Musah, S., Mammoto, A., Ferrante, C. T., Jeanty, S.S., Hirano-Kobayashi, M., Mammoto, T., Roberts, K., Chung, S., Novak, R., Ingram, M., Fatanat-Didar, T., Koshy, S., Weaver, C. J., Church, M. G., 

Ingber, F. D. . Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute 

kidney glomerular-capillary-wall function on a chip. Nature Biomedical Engineering1 (0069), 

(2017)

 

[21]

Camp, J. G., Sekine, K., Gerber, T., Loeffler-Wirth, H., Binder, H., Gac, M., Kanton, S., Kageyama, J., Damm, G., Seehofer, D., Belicova, L., Barsacchi, M., Barsacchi, R., Okuda, R., Yoshizawa, E., Kimura, M., Ayabe, H., Taniguchi, H., Takebe, T., & Belicova, L.. Multilineage communication regulates 

human liver bud development from pluripotency. Nature546, 533-538, (2017)

 

[22]

Polisetti, N., Sorokin, L., Okumura, N., Koizumi, N., Kinoshita, S., Kruse, F. E., and Schlotzer-

Schrehardt, U. Laminin-511 and-521-based matrices for efficient ex vivo-expansion of human 

limbal epithelial progenitor cells. Scientific Reports7, 5152, (2017)

 

[23]

Hongo, A., Okumura, N., Nakahara, M., Kay, E. P., & Koizumi, N.. The Effect of a p38 Mitogen-

Activated Protein Kinase Inhibitor on Cellular Senescence of Cultivated Human Corneal 

Endothelial CellsEffect of a p38 MAPK Inhibitor on Corneal Endothelial Cells. Investigative Ophthalmology & Visual Science58(9), 3325-3334, (2017)

 

[24]

Taniguchi, Y., Li, S., Takizawa, M., Oonishi, E., Toga, J., Yagi, E., & Sekiguchi, K. Probing the acidic 

residue within the integrin binding site of laminin-511 that interacts with the metal ion-

dependent adhesion site of α6β1 integrin. Biochemical and Biophysical Research 

Communications487(3), 525-531, (2017)

 

[25]

Sekine, S. I., Kondo, T., Murakami, N., Imamura, K., Enami, T., Shibukawa, R., Tsukita, K., Funayama, M., Inden, M., Kurita, H., Hozumi, I., Inoue, H.. Induced pluripotent stem cells derived from a 

patient with familial idiopathic basal ganglia calcification (IBGC) caused by a variant in SLC20A2 

gene. Stem Cell Research, (2017)

 

[26]

Tan, G. W., Kondo, T., Murakami, N., Imamura, K., Enami, T., Tsukita, K., Shibukawa, R., Funayama, M., Matsumoto, R., Ikeda, I., Takahashi, R., Inoue, H.. Induced pluripotent stem cells derived from an autosomal dominant lateral temporal epilepsy (ADLTE) patient carrying S473L mutation in 

leucine-rich glioma inactivated 1 (LGI1). Stem Cell Research, (2017)

 

[27]

Sato-Nishiuchi, R., Li, S., Ebisu, F., Sekiguchi, K.. Recombinant laminin fragments endowed with 

collagen-binding activity: A tool for conferring laminin-like cell-adhesive activity to collagen 

matrices. Matrix Biology, (2017)

 

[28]

Kikuchi, T., Morizane, A., Doi, D., Magotani, H., Onoe, H., Hayashi, T., Mizuma, H., Takara, S., 

Takahashi, R., Inoue, H., Morita, S., Yamamoto, M., Okita, K., Nakagawa, M., Parmar, M., Takahashi, J.. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease 

model. Nature548, 592-596, (2017)

 

[29]

Takizawa, M., Arimori, T., Taniguchi, Y., Kitago, Y., Yamashita, E., Takagi, J., Sekiguchi, K.. 

Mechanistic basis for the recognition of laminin-511 by α6β1 integrin. Science Advances3(9), 

e1701497, (2017)

 

[30]

Morizane, A., Kikuchi, T., Hayashi, T., Mizuma, H., Takara, S., Doi, H., Mawatari, A., Glasser, M.F., 

Shiina, T., Ishigaki, H., Itoh, Y., Okita, K., Yamasaki, E., Doi, D., Onoe, H., Ogasawara, K., Yamanaka, S., and Takahashi, J. . MHC matching improves engraftment of iPSC-derived neurons in non-

human primates. Nature Communications8(1), 385, (2017)

 

[31]

Kikuchi, T., Morizane, A., Doi, D., Magotani, H., Onoe, H., Hayashi, T., Mizuma, H., Takara, S., 

Takahashi, R., Inoue, H., Morita, S., Yamamoto, M., Okita, K., Nakagawa, M., Parmar, M., Takahashi, J. . human ips cell-derived dopaminergic neurons function in a primate Parkinson's disease 

model. Nature548(7669), 592-596, (2017)

 

[32]

Kojima, Y., Sasaki, K., Yokobayashi, S., Sakai, Y., Nakamura, T., Yabuta, Y., Nakaki, F., Nagaoka, S., Woltjen, K., Hotta, A., Yamamoto, T., Saitou, M.. Evolutionarily Distinctive Transcriptional and 

Signaling Programs Drive Human Germ Cell Lineage Specification from Pluripotent Stem 

Cells. Cell Stem Cell21(4), 517-532.e5, (2017)

 

[33]

Taguchi, A., & Nishinakamura, R.. Higher-Order Kidney Organogenesis from Pluripotent Stem 

Cells. Cell Stem Cell21. (2017)

 

[34]

Takebe, T., Sekine, K., Kimura, M., Yoshizawa, E., Ayano, S., Koido, M., Funayama, S., Nakanishi, N., Hisai, T., Kobayashi, T., Kasai, T., Kitada, R., Mori, A., Ayabe, H., Ejiri, Y., Amimoto, N., Yamazaki, Y., Ogawa, S., Ishikawa, M., Kiyota, Y., Sato, Y., Nozawa, K., Okamoto, S., Ueno, Y., Kasai, T.. Massive 

and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells. Cell 

Reports21(10), 2661-2670, (2017)

 

[35]

Uchimura, T., Otomo, J., Sato, M., Sakurai, H.. A human iPS cell myogenic differentiation system 

permitting high-throughput drug screening. Stem cell research25, 98-106, (2017)

 

[36]

Sougawa, N., Miyagawa, S., Fukushima, S., Saito, A., Yokoyama, J., Kitahara, M., Harada, A., Sato-

Nishiuchi, R., Sekiguchi, K., Sawa, Y.. Novel Stem Cell Niches Laminin 511 Promotes Functional 

Angiogenesis Through Enhanced Stem Cell Homing by Modulating" Stem Cell Beds" in the Failed Heart.Circulation136(1), A15587, (2017)

 

[37]

Samata, B., Doi, D., Nishimura, K., Kikuchi, T., Watanabe, A., Sakamoto, Y., Kakuta, J., Ono, Y.,& 

Takahashi, J.. Purification of functional human ES and iPSC-derived midbrain dopaminergic 

progenitors using LRTM1. Nature Communications7(13097), 1-11, (2016)

 

[38]

Hayashi, R., Ishikawa, Y., Sasamoto, Y., Katori, R., Nomura, N., Ichikawa, T., Araki, S., Soma, T., 

Kawasaki, S., Sekiguchi, K., Tsujikawa, M., Nishida, K., & Quantock, A. J.. Co-ordinated ocular 

development from human iPS cells and recovery of corneal function. Nature531(7594), 376-380, (2016)

 

[39]

Matsuno, K., Mae, S. I., Okada, C., Nakamura, M., Watanabe, A., Toyoda, T., Uchida, E., Osafune, K.. Redefining definitive endoderm subtypes by robust induction of human induced pluripotent 

stem cells.Differentiation; research in biological diversity, (2016)

 

[40]

Nishimura, K., Doi, D., Samata, B., Murayama, S., Tahara, T., Onoe, H., & Takahashi, J.. Estradiol 

Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal 

Circuits via Activation of Integrin α5β1. Stem cell reports6(4), 511-524, (2016)

 

[41]

Takayama, K., Mitani, S., Nagamoto, Y., Sakurai, F., Tachibana, M., Taniguchi, Y., Sekiguchi,K., 

Mizuguchi, H.. Laminin 411 and 511 promote the cholangiocyte differentiation of human induced pluripotent stem cells. Biochemical and biophysical research communications474(1), 91-96, (2016)

 

[42]

Kawamura, T., Miyagawa, S., Fukushima, S., Maeda, A., Kashiyama, N., Kawamura, A., Miki, K., 

Okita, K., Yoshida, Y., Shiina, T., Ogasawara, K., Miyagawa, S., Toda, K., Okuyama, H., Sawa,Y.. 

Cardiomyocytes derived from MHC-homozygous induced pluripotent stem cells exhibit reduced allogeneic immunogenicity in MHC-matched non-human primates. Stem cell reports, 6(3), 312-

320, (2016).

 

[43]

Tanigawa, S., Taguchi, A., Sharma, N., Perantoni, A. O., & Nishinakamura, R.. Selective in vitro 

propagation of nephron progenitors derived from embryos and pluripotent stem cells. Cell 

reports15(4), 801-813, (2016)

 

[44]

Okumura, N., Kakutani, K., Numata, R., Nakahara, M., Schlotzer-Schrehardt, U., Kruse, F., Kinoshita. K., Koizumi, N.. Laminin-511 and-521 Enable Efficient In Vitro Expansion of Human Corneal 

Endothelial CellsLaminin-511 and-521 Enable Expansion of HCECs. Investigative ophthalmology & visual science56(5), 2933-2942, (2015)

 

[45]

Sasaki, K., Yokobayashi, S., Nakamura, T., Okamoto, I., Yabuta, Y., Kurimoto, K., Ohta, H., Moritoki, Y., Iwatani, C., Tsuchiya, H., Nakamura, S., Sekiguchi, K., Sakuma, T., Yamamoto, T., Mori, T., 

Woltjen, K., Nakagawa, M., Yamamoto, T., Takahashi, K., Yamanaka, S., Saitou, M.. Robust in vitro 

induction of human germ cell fate from pluripotent stem cells. Cell stem cell17(2), 178-194, 

(2015)

 

[46]

Nakagawa, M., Taniguchi, Y., Senda, S., Takizawa, N., Ichisaka, T., Asano, K., Morizane, A., Doi, D., 

Takahashi, J., Nishizawa, M., Yoshida, Y., Toyoda, T., Osafune, K., Sekiguchi, K., & Yamanaka, S. . A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem 

cells. Scientific reports4(3594), 1-7, (2014)

 

[47]

Doi, D., Samata, B., Katsukawa, M., Kikuchi, T., Morizane, A., Ono, Y., Sekiguchi, K., Nakagawa, M., Parmar, M., Takahashi, J.. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem cell reports2(3), 337-350, (2014)

 

[48]

Takashima, Y., Guo, G., Loos, R., Nichols, J., Ficz, G., Krueger, F., Oxley, D., Santos, F., Clarke, J., 

Mansfield, W., Reik, W., Bertone, P., Smith, A.. Resetting transcription factor control circuitry 

toward ground-state pluripotency in human. Cell158(6), 1254-1269, (2014)

 

[49]

Fukuta, M., Nakai, Y., Kirino, K., Nakagawa, M., Sekiguchi, K., Nagata, S., Matsumoto, Y., 

Yamamoto, T., Umeda, K., Heike, T., Okumura, N., Koizumi, N., Sato, T., Nakahata, T., Saito, M., 

Otsuka, T., Kinoshita, S., Ueno, M., Ikeya, M., Toguchida, J. . Derivation of mesenchymal stromal 

cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media. PloS one9(12), e112291, (2014)

 

[50]

Burridge, P. W., Matsa, E., Shukla, P., Lin, Z. C., Churko, J. M., Ebert, A. D., Lan, F., Diecke, S., Huber, B., Mordwinkin, N. M., Plews, J. R., Abilez, O. J., Cui, B., Gold, J. D., & Wu, J. C. . Chemically defined generation of human cardiomyocytes. Nature methods11(8), 855-860, (2014)

 

[51]

Miyazaki, T., Futaki, S., Suemori, H., Taniguchi, Y., Yamada, M., Kawasaki, M., Hayashi, M., Kumagai, H., Nakatsuji, N., Sekiguchi, K., & Kawase, E. . Laminin E8 fragment support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nature communications3(1236), 1-10, 

(2012)

 

[52]

Taniguchi, Y., Ido, H., Sanzen, N., Hayashi, M., Sato-Nishiuchi, R., Futaki, S., & Sekiguchi, K. . The C-terminal region of laminin β chains modulates the integrin binding affinities of laminins. Journal 

of Biological Chemistry284(12), 7820-7831, (2009)

 

[53]

Ido, H., Nakamura, A., Kobayashi, R., Ito, S., Li, S., Futaki, S., & Sekiguchi, K. . The requirement of 

the glutamic acid residue at the third position from the carboxyl termini of the laminin γ chains in integrin binding by laminins. Journal of Biological Chemistry282(15), 11144-11154, (2007)




产品编号 产品名称 产品规格 产品等级
关注微信公众号及时获取最新资讯
生物微信号
化学分析微信号